436
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Turbulence in an Optically Accessible Fan-Stirred Spherical Combustion Chamber

, , &
Pages 1231-1257 | Received 28 Jan 2019, Accepted 26 Oct 2019, Published online: 13 Nov 2019

References

  • Abdel-Gayed, R., D. Bradley, M. Hamid, and M. Lawes. 1985. Lewis number effects on turbulent burning velocity. Twentieth Symposium (international) on combustion, The Combustion Institute, Pittsburgh: Elsevier.
  • Abdel-Gayed, R., D. Bradley, M. Lawes, and F.-K. Lung. 1988. Premixed turbulent burning during explosions. Symposium (International) on Combustion, Technical University of Munich West Germany: Elsevier.
  • Andrews, G., D. Bradley, and S. Lwakabamba. 1975. Turbulence and turbulent flame propagation—A critical appraisal. Combust. Flame 24:285–304. doi:10.1016/0010-2180(75)90163-7.
  • Baker, W. E., P. Cox, J. Kulesz, R. Strehlow, and P. Westine. 2012. Explosion hazards and evaluation. New York: Elsevier.
  • Batchelor, G. K. 1953. The theory of homogeneous turbulence. Cambridge university press.
  • Bewley, G. P., K. Chang, and E. Bodenschatz. 2012. On integral length scales in anisotropic turbulence. Phys. Fluids 24 (6):061702. doi:10.1063/1.4726077.
  • Birouk, M., C. Chauveau, B. Sarh, A. Quilgars, and I. Gökalp. 1996. Turbulence effects on the vaporization of monocomponent single droplets. Combust. Sci. Technol. 113 (1):413–28. doi:10.1080/00102209608935506.
  • Bradley, D., and G. Hundy. 1971. Burning velocities of methane-air mixtures using hot-wire anemometers in closed-vessel explosions. Thirteenth Symposium (International) on Combustion, University of Utah Salt Lake City, Utah: Elsevier.
  • Bradley, D., M. Lawes, and M. Mansour. 2011. Correlation of turbulent burning velocities of ethanol–Air, measured in a fan-stirred bomb up to 1.2 MPa. Combust. Flame 158 (1):123–38. doi:10.1016/j.combustflame.2010.08.001.
  • Bradley, D., M. Lawes, and M. S. Mansour. 2011. The problems of the turbulent burning velocity. Flow Turbul. Combust. 87 (2–3):191–204. doi:10.1007/s10494-011-9339-y.
  • Bradley, D., P. Gaskell, and X. Gu. 1996. Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: A computational study. Combust. Flame 104 (1–2):176–98. doi:10.1016/0010-2180(95)00115-8.
  • Bray, K. N. C. 1990. Studies of the turbulent burning velocity. Proc. R. Soc. Lond. A 431 (1882):315–35. doi:10.1098/rspa.1990.0133.
  • Chang, K., G. P. Bewley, and E. Bodenschatz. 2012. Experimental study of the influence of anisotropy on the inertial scales of turbulence. J. Fluid Mech. 692:464–81. doi:10.1017/jfm.2011.529.
  • Chen, J. H., and H. G. Im (1998). Correlation of flame speed with stretch in turbulent premixed methane/air flames. Twenty-Seventh Symposium (International) on Combustion. The university of Colorado at Boulder, Boulder, Colorado, USA: Elsevier.
  • Cheng, N.-S., and A. W.-K. Law. 2001. Measurements of turbulence generated by oscillating grid. J. Hydraul. Eng. 127 (3):201–08. doi:10.1061/(ASCE)0733-9429(2001)127:3(201).
  • Coppola, G., B. Coriton, and A. Gomez. 2009. Highly turbulent counterflow flames: A laboratory scale benchmark for practical systems. Combust. Flame 156 (9):1834–43. doi:10.1016/j.combustflame.2009.03.017.
  • Corrsin, S. 1963. Turbulence: Experimental methods. Handbuch Phys. 3:524–90.
  • De Jong, J., L. Cao, S. Woodward, J. Salazar, L. Collins, and H. Meng. 2009. Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Exp. Fluids. 46 (3):499. doi:10.1007/s00348-008-0576-3.
  • De Silva, I., and H. Fernando. 1994. Oscillating grids as a source of nearly isotropic turbulence. Phys. Fluids 6 (7):2455–64. doi:10.1063/1.868193.
  • Doron, P., L. Bertuccioli, J. Katz, and T. Osborn. 2001. Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J Phys Oceanogr 31 (8):2108–34. doi:10.1175/1520-0485(2001)031<2108:TCADEI>2.0.CO;2.
  • Dou, Z., Z. K. Pecenak, L. Cao, S. H. Woodward, Z. Liang, and H. Meng. 2016. PIV measurement of high-reynolds-number homogeneous and isotropic turbulence in an enclosed flow apparatus with fan agitation. Meas. Sci. Technol. 27 (3):035305. doi:10.1088/0957-0233/27/3/035305.
  • Echekki, T., and E. Mastorakos. 2010. Turbulent combustion modeling: Advances, new trends and perspectives, springer science & business media.
  • Fallon, T., and C. Rogers. 2002. Turbulence-induced preferential concentration of solid particles in microgravity conditions. Exp. Fluids 33 (2):233–41. doi:10.1007/s00348-001-0394-3.
  • Fansler, T. D., and E. G. Groff. 1990. Turbulence characteristics of a fan-stirred combustion vessel. Combust. Flame 80 (3–4):350–54. doi:10.1016/0010-2180(90)90110-D.
  • Foucaut, J.-M., and M. Stanislas. 2002. Some considerations on the accuracy and frequency response of some derivative filters applied to particle image velocimetry vector fields. Meas. Sci. Technol. 13 (7):1058. doi:10.1088/0957-0233/13/7/313.
  • Fulachier, L., and R. Antonia. 1983. Turbulent Reynolds and Péclet numbers re-defined. Int. Commun. Heat Mass Transfer 10 (5):435–39. doi:10.1016/0735-1933(83)90032-5.
  • Galmiche, B., N. Mazellier, F. Halter, and F. Foucher. 2014. Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using LDV, PIV and TR-PIV measurements. Exp. Fluids 55 (1):1636. doi:10.1007/s00348-013-1636-x.
  • Garnier, E., M. Mossi, P. Sagaut, P. Comte, and M. Deville. 1999. On the use of shock-capturing schemes for large-eddy simulation. J. Comput. Phys. 153 (2):273–311. doi:10.1006/jcph.1999.6268.
  • Geipel, P., K. H. Goh, and R. P. Lindstedt. 2010. Fractal-generated turbulence in opposed jet flows. Flow Turbul. Combust. 85 (3–4):397–419. doi:10.1007/s10494-010-9288-x.
  • Girimaji, S., and S. Pope. 1992. Propagating surfaces in isotropic turbulence. J. Fluid Mech. 234:247–77. doi:10.1017/S0022112092000776.
  • Goepfert, C., J.-L. Marié, D. Chareyron, and M. Lance. 2010. Characterization of a system generating a homogeneous isotropic turbulence field by free synthetic jets. Exp. Fluids 48 (5):809–22. doi:10.1007/s00348-009-0768-5.
  • Gotoh, T., D. Fukayama, and T. Nakano. 2002. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14 (3):1065–81. doi:10.1063/1.1448296.
  • Goulier, J., N. Chaumeix, F. Halter, N. Meynet, and A. Bentaïb. 2017. Experimental study of laminar and turbulent flame speed of a spherical flame in a fan-stirred closed vessel for hydrogen safety application. Nucl. Eng. Des. 312:214–27. doi:10.1016/j.nucengdes.2016.07.007.
  • Gülder, Ö. L. 1991. Turbulent premixed flame propagation models for different combustion regimes. Twenty-Third Symposium (International) on Combustion, the University of Orleans, Orleans France: Elsevier.
  • Gülder, Ö. L. 2007. Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31 (1):1369–75. doi:10.1016/j.proci.2006.07.189.
  • Hinze, J. 1975. Turbulence, 790. New York: McGraw-Hill.
  • Hunt, J. C., A. A. Wray, and P. Moin. 1988. Eddies, streams, and convergence zones in turbulent flows.
  • Hwang, W., and J. Eaton. 2004. Creating homogeneous and isotropic turbulence without a mean flow. Exp. Fluids. 36 (3):444–54. doi:10.1007/s00348-003-0742-6.
  • Kobayashi, H., T. Nakashima, T. Tamura, K. Maruta, and T. Niioka. 1997. Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa. Combust. Flame 108 (1):104–17. doi:10.1016/S0010-2180(96)00103-4.
  • Kolář, V. 2007. Vortex identification: New requirements and limitations. Int. J. Heat Fluid Flow 28 (4):638–52. doi:10.1016/j.ijheatfluidflow.2007.03.004.
  • Krawczynski, J., B. Renou, L. Danaila, and F. Demoulin. 2006. Small-scale measurements in a partially stirred reactor. Exp. Fluids 40 (5):667–82. doi:10.1007/s00348-005-0099-0.
  • Krogstad, P.-Å., and P. Davidson. 2010. Is grid turbulence Saffman turbulence? J. Fluid Mech. 642:373–94. doi:10.1017/S0022112009991807.
  • Krogstad, P.-Å., and P. Davidson. 2011. Freely decaying, homogeneous turbulence generated by multi-scale grids. J. Fluid Mech. 680:417–34. doi:10.1017/jfm.2011.169.
  • Lachaux, T., F. Halter, C. Chauveau, I. Gökalp, and I. Shepherd. 2005. Flame front analysis of high-pressure turbulent lean premixed methane–Air flames. Proc. Combust. Inst. 30 (1):819–26. doi:10.1016/j.proci.2004.08.191.
  • Lenormand, E., P. Sagaut, L. T. Phuoc, and P. Comte. 2000. Subgrid-scale models for large-eddy simulations of compressible wall bounded flows. Aiaa J. 38 (8):1340–50. doi:10.2514/2.1133.
  • Mansour, N., and A. Wray. 1994. Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6 (2):808–14. doi:10.1063/1.868319.
  • Mathieu, J., and J. Scott. 2000. An introduction to turbulent flow. The Pitt building, Trumpington Street, Cambridge, United Kingdom: Cambridge University Press.
  • Mishra, D. 2014. Experimental combustion: An introduction. Crc Press.
  • Moin, P., K. Squires, W. Cabot, and S. Lee. 1991. A dynamic subgrid‐scale model for compressible turbulence and scalar transport. Phys. Fluids A 3 (11):2746–57. doi:10.1063/1.858164.
  • O’neill, P., D. Nicolaides, D. Honnery, and J. Soria. 2004. Autocorrelation functions and the determination of integral length with reference to experimental and numerical data. 15th Australasian Fluid Mechanics Conference, The University of Sydney, Sydney, Australia.
  • Peters, N. 1999. The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384:107–32. doi:10.1017/S0022112098004212.
  • Peters, N. 2000. Turbulent combustion. The Pitt building, Trumpington Street, Cambridge, United Kingdom: Cambridge university press.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion, Philadelphia, PA 1911 USA. R.T.Edwards,.
  • Pope, S. B. 2001. Turbulent flows. New York: Cambridge University Press.
  • Ravi, S., S. J. Peltier, and E. L. Petersen. 2013. Analysis of the impact of impeller geometry on the turbulent statistics inside a fan-stirred, cylindrical flame speed vessel using PIV. Exp. Fluids 54 (1):1424. doi:10.1007/s00348-012-1424-z.
  • Risso, F., and J. Fabre. 1997. Diffusive turbulence in a confined jet experiment. J. Fluid Mech. 337:233–61. doi:10.1017/S0022112097004965.
  • Roach, P. 1987. The generation of nearly isotropic turbulence by means of grids. Int. J. Heat Fluid Flow 8 (2):82–92. doi:10.1016/0142-727X(87)90001-4.
  • Ronney, P. D., and G. I. Sivashinsky. 1989. A theoretical study of propagation and extinction of nonsteady spherical flame fronts. SIAM J. Appl. Math. 49 (4):1029–46. doi:10.1137/0149062.
  • Sagaut, P. 2006. Large eddy simulation for incompressible flows: An introduction. Springer Science & Business Media, Thrid Edition, Springer Berlin Heidelberg New York.
  • Semenov, E. 1965. Measurement of turbulence characteristics in a closed volume with artificial turbulence. Combust. Explosion Shock Waves 1 (2):57–62. doi:10.1007/BF00757231.
  • Shy, S., W. Lin, and J. Wei. 2000. An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion. Proc. R. Soc. Lond. A The Royal Society. doi:10.1098/rspa.2000.0599.
  • Shy, S., W. Shih, and C. Liu. 2008. More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes. Combust. Sci. Technol. 180 (10–11):1735–47. doi:10.1080/00102200802258114.
  • Sreenivasan, K. R. 1995. On the universality of the Kolmogorov constant. Phys. Fluids 7 (11):2778–84. doi:10.1063/1.868656.
  • Takeno, T. 2012. Turbulence and molecular processes in combustion. Amesterdam, The Netherlands, Elsevier.
  • Tennekes, H. 1968. Simple model for the small‐scale structure of turbulence. Phys. Fluids 11 (3):669–71. doi:10.1063/1.1691966.
  • Tennekes, H., and J. L. Lumley. 1972. A first course in turbulence. USA, MIT press.
  • Varea, E., V. Modica, A. Vandel, and B. Renou. 2012. Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: Application to laminar spherical flames for methane, ethanol and isooctane/air mixtures. Combust. Flame 159 (2):577–90. doi:10.1016/j.combustflame.2011.09.002.
  • Villermaux, E., B. Sixou, and Y. Gagne. 1995. Intense vortical structures in grid‐generated turbulence. Phys. Fluids 7 (8):2008–13. doi:10.1063/1.868512.
  • Wabel, T. M., A. W. Skiba, and J. F. Driscoll. 2018. Evolution of turbulence through a broadened preheat zone in a premixed piloted Bunsen flame from conditionally-averaged velocity measurements. Combust. Flame 188:13–27. doi:10.1016/j.combustflame.2017.09.013.
  • Wilcox, D. C. 1993. Turbulence modeling for CFD. CA: DCW industries La Canada.
  • Willert, C. E., and M. Gharib. 1991. Digital particle image velocimetry. Exp. Fluids 10 (4):181–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.