290
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Combustion of Composites of Boron with Bismuth and Cobalt Fluorides in Different Environments

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1343-1358 | Received 19 Sep 2019, Accepted 15 Nov 2019, Published online: 25 Nov 2019

References

  • Ao, W., Y. Wang, and S. Wu. 2017. Ignition kinetics of boron in primary combustion products of propellant based on its unique characteristics. Acta Astronaut. 136:450–58. doi:10.1016/j.actaastro.2017.03.002.
  • Arnold, W., and E. Rottenkolber. 2009. Combustion of boron loaded explosives. Int. Annu. Conf. ICT 40th, 37/1-37/10.
  • Burkland, C. V. 1969. RANKINE CYCLE POWERPLANT WITH BORON SLURRY FUEL. SAE-Paper 690732.
  • Cahill, D. G., H. E. Fischer, S. K. Watson, R. O. Pohl, and G. A. Slack. 1989. Thermal properties of boron and borides. Phys. Rev. B 40:3254–60. doi:10.1103/PhysRevB.40.3254.
  • Chen, B., Z. Xia, L. Huang, and J. Hu. 2017. Ignition and combustion model of a single boron particle. Fuel Process. Technol. 165:34–43. doi:10.1016/j.fuproc.2017.05.008.
  • Chintersingh, K. L., Q. Nguyen, M. Schoenitz, and E. L. Dreizin. 2016a. Combustion of boron particles in products of an air–Acetylene flame. Combust. Flame 172:194–205. doi:10.1016/j.combustflame.2016.07.014.
  • Chintersingh, K. L., M. Schoenitz, and E. L. Dreizin. 2016b. Oxidation kinetics and combustion of boron particles with modified surface. Combust. Flame 173:288–95. doi:10.1016/j.combustflame.2016.08.027.
  • Chintersingh, K. L., M. Schoenitz, and E. L. Dreizin. 2018. Combustion of boron and boron–Iron composite particles in different oxidizers. Combust. Flame 192:44–58. doi:10.1016/j.combustflame.2018.01.043.
  • Chintersingh, K. L., M. Schoenitz, and E. L. Dreizin. 2019. Boron doped with iron: Preparation and combustion in air. Combust. Flame 200:286–95. doi:10.1016/j.combustflame.2018.11.031.
  • Connell, T. L., Jr., G. A. Risha, R. A. Yetter, C. W. Roberts, and G. Young. 2015. Boron and polytetrafluoroethylene as a fuel composition for hybrid rocket applications. J. Propul. Power 31:373–85. doi:10.2514/1.B35200.
  • Corcoran, A., S. Mercati, H. Nie, M. Milani, L. Montorsi, and E. L. Dreizin. 2013. Combustion of fine aluminum and magnesium powders in water. Combust. Flame 160:155–60. doi:10.1016/j.combustflame.2013.04.019.
  • Corcoran, A. L., S. Wang, Y. Aly, and E. L. Dreizin. 2015. Combustion of mechanically alloyed Al·Mg powders in products of a hydrocarbon flame. Combust. Sci. Technol. 187:807–25. doi:10.1080/00102202.2014.973951.
  • Dreizin, E. L., D. G. Keil, W. Felder, and E. P. Vicenzi. 1999. Phase changes in boron ignition and combustion. Combust. Flame 119:272–90. doi:10.1016/S0010-2180(99)00066-8.
  • Gany, A. 2014. Thermodynamic limitation on boron energy realization in ramjet propulsion. Acta Astronaut. 98:128–32. doi:10.1016/j.actaastro.2014.01.023.
  • Gany, A., and Y. M. Timnat. 1993. Advantages and drawbacks of boron-fueled propulsion. Acta Astronaut. 29:181–87. doi:10.1016/0094-5765(93)90047-Z.
  • Glassman, I., F. A. Williams, and P. Antaki. 1985. A physical and chemical interpretation of boron particle combustion. Symp. (Int.) Combust. 20:2057–64. doi:10.1016/S0082-0784(85)80707-4.
  • Hashim, S. A., P. K. Ojha, S. Karmakar, A. Roy, and D. Chaira. 2019. Experimental observation and characterization of B−HTPB-based solid fuel with addition of iron particles for hybrid gas generator in ducted rocket applications. Propellants Explos. Pyrotech. 44:896–907. doi:10.1002/prep.v44.7.
  • Hedman, T. D., A. R. Demko, and J. Kalman. 2018. Enhanced ignition of milled boron-polytetrafluoroethylene mixtures. Combust. Flame 198:112–19. doi:10.1016/j.combustflame.2018.08.020.
  • Hsieh, W.-H., A. Peretz, I. T. Huang, and K. K. Kuo. 1991. Combustion behavior of boron-based BAMO/NMMO fuel-rich solid propellants. J. Propul. Power 7:497–504. doi:10.2514/3.23354.
  • Kalpakli, B., E. B. Acar, and A. Ulas. 2017. Improved combustion model of boron particles for ducted rocket combustion chambers. Combust. Flame 179:267–79. doi:10.1016/j.combustflame.2017.02.015.
  • Karmakar, S., N. Wang, S. Acharya, and K. M. Dooley. 2013. Effects of rare-earth oxide catalysts on the ignition and combustion characteristics of boron nanoparticles. Combust. Flame 160:3004–14. doi:10.1016/j.combustflame.2013.06.030.
  • King, M. K. 1973. Boron particle ignition in hot gas streams. Combust. Sci. Technol. 8:255–73. doi:10.1080/00102207308946648.
  • Krier, H., R. L. Burton, S. R. Pirman, and M. J. Spalding. 1996. Shock initiation of crystalline boron in oxygen and fluorine compounds. J. Propul. Power 12:672–79. doi:10.2514/3.24088.
  • Liu, J. Z., D. L. Liang, Y. N. Zhou, and J. H. Zhou. 2017a. Review on ignition and combustion characteristics of boron particles. Guti Huojian Jishu/J. Solid Rocket Technol. 40:573–82.
  • Liu, T. K., I. M. Shyu, and Y. S. Hsia. 1996. Effect of fluorinated graphite on combustion of boron and boron-based fuel-rich propellants. J. Propul. Power 12:26–33. doi:10.2514/3.23986.
  • Liu, X., J. Gonzales, M. Schoenitz, and E. L. Dreizin. 2017b. Effect of purity and surface modification on stability and oxidation kinetics of boron powders. Thermochim Acta 652:17–23. doi:10.1016/j.tca.2017.03.007.
  • Luman, J. R., B. Wehrman, K. K. Kuo, R. A. Yetter, N. M. Masoud, T. G. Manning, L. E. Harris, and H. A. Bruck. 2007. Development and characterization of high performance solid propellants containing nano-sized energetic ingredients. Proceedings of the Combustion Institute, 31 II(2):2089–2096. doi:10.1016/j.proci.2006.07.024.
  • Maček, A. 1973. Combustion of boron particles: Experiment and theory. Symp. (Int.) Combust. 14:1401–11. doi:10.1016/S0082-0784(73)80125-0.
  • Mohan, S., M. A. Trunov, and E. L. Dreizin. 2008. Heating and ignition of metallic particles by a CO2 laser. J. Propul. Power 24:199–205. doi:10.2514/1.30195.
  • Natan, B., and A. Gany. 1993. Combustion characteristics of a boron-fueled solid fuel ramjet with aft-burner. J. Propul. Power 9:694–701. doi:10.2514/3.23677.
  • Rosenband, V., A. Gany, and Y. M. Timnat. 1998. Magnesium and boron combustion in hot steam atmosphere. Def. Sci. J. 48:309–15. doi:10.14429/dsj.48.3953.
  • Shidlovskii, A. A., and V. V. Gorbunov. 1978. Combustion of PTFE mixed with boron, titanium, or magnesium. Combust. Explos. Shock Waves 14:127–29. doi:10.1007/BF00789189.
  • Solozhenko, V. L., O. O. Kurakevych, V. Z. Turkevich, and D. V. Turkevich. 2008. Phase diagram of the B-B2O3 system at 5 GPa: Experimental and theoretical studies. J. Phys. Chem. B 112:6683–87. doi:10.1021/jp800625s.
  • Spalding, M. J., H. Krier, and R. L. Burton. 2000. Boron suboxides measured during ignition and combustion of boron in shocked Ar/F/O 2 and Ar/N 2/O 2 mixtures. Combust. Flame 120:200–10. doi:10.1016/S0010-2180(99)00082-6.
  • Ulas, A., K. K. Kuo, and C. Gotzmer. 2001. Ignition and combustion of boron particles in fluorine-containing environments. Combust. Flame 127:1935–57. doi:10.1016/S0010-2180(01)00299-1.
  • Valluri, S. K., M. Schoenitz, and E. Dreizin. 2019a. Boron-metal fluoride reactive composites: Preparation and reactions leading to their ignition. J. Propul. Power 35:802–10. doi:10.2514/1.B37306.
  • Valluri, S. K., M. Schoenitz, and E. L. Dreizin. 2019b. Combustion of Aluminum-metal Fluoride Reactive Composites in Different Environments. Propellants Explos. Pyrotech. 44:1327–36. doi:10.1002/prep.v44.10.
  • Wu, W. J., W. J. Chi, Q. S. Li, J. N. Ji, and Z. S. Li. 2017. Strategy of improving the stability and detonation performance for energetic material by introducing the boron atoms. J. Phys. Org. Chem 30 (12).
  • Xu, S., Y. Chen, X. Chen, D. Wu, and D. Liu. 2016. Combustion heat of the Al/B powder and its application in metallized explosives in underwater explosions. Combust. Explos. Shock Waves 52:342–49. doi:10.1134/S001050821603014X.
  • Yeh, C. L., and K. K. Kuo. 1996. Ignition and combustion of boron particles. Prog. Energy Combust. Sci. 22:511–41. doi:10.1016/S0360-1285(96)00012-3.
  • Young, G., C. W. Roberts, and C. A. Stoltz. 2015. Ignition and combustion enhancement of boron with polytetrafluoroethylene. J. Propul. Power 31:386–92. doi:10.2514/1.B35390.
  • Young, G., C. A. Stoltz, D. H. Mayo, C. W. Roberts, and C. L. Milby. 2013. Combustion behavior of solid fuels based on PTFE/boron mixtures. Combust. Sci. Technol. 185:1261–80. doi:10.1080/00102202.2013.787417.
  • Yu, D., J. Zhuo, and Q. Yao. 2014. Review on ignition and combustion characteristics of boron particles. Ranshao Kexue Yu Jishu/J. Combust. Sci. Technol. 20:44–50.
  • Yu, H. T., M. X. Li, and H. G. Fu. 2003. Theoretical study on the mechanism of the HF + HOBO reaction. Chem. Phys. Lett. 379:105–12. doi:10.1016/j.cplett.2003.08.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.