242
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigation on Combustion and Gas Emission of Scrap Tire Pellet under Various Concentrations of CO2/O2 Mixtures

, , , , , & show all
Pages 1495-1515 | Received 26 Jul 2019, Accepted 29 Nov 2019, Published online: 05 Dec 2019

References

  • http://www.chinatiredealer.com/news/show-40471.html [online] 2018.10.
  • Alvarez, R., M. S. Callén, C. Clemente, M. A. Díaz-Bautista, J. M. López, A. M. Mastral, and R. Murillo. 2004. Slagging in fluidized bed combustion of rubber tire. Inorganic component evolution. Ind Eng Chem Res 43 (24):7762–67. doi:10.1021/ie0400494.
  • Asanuma, M., T. Ariyama, M. Sato, R. Murai, T. Nonaka, I. Okochi, H. Tsukiji, and K. Nemoto. 2000. Development of waste plastics injection process in blast furnace. ISIJ 40 (3):244–51. doi:10.2355/isijinternational.40.244.
  • Bejarano, P. A., and Y. A. Levendis. 2008. Single-coal-particle combustion in O2/N2 and O2/CO2 environments. Combust. Flame 153 (1–2):270–87. doi:10.1016/j.combustflame.2007.10.022.
  • Chen, X., J. Xie, S. Mei, and F. He. 2018. NOx and SO2 emissions during co-combustion of RDF and anthracite in the environment of precalciner. Energies 11 (2):337. doi:10.3390/en11020337.
  • China, N.B. of S. of. 2012. China statistical yearbook 2012. Beijing: China Statistical Press.
  • China, N.B. of S. of. 2017. China statistical yearbook 2017. Beijing: China Statistical Press.
  • Christopher, R., and A. M. Shaddix. 2009. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc. Combust. Inst. 32 (2):2091–98. doi:10.1016/j.proci.2008.06.157.
  • Collings, M. E., M. D. Mann, and B. C. Young. 1993. Effect of coal rank and circulating fluidized-bed operating parameters on nitrous oxide emissions. Energy Fuel 7:554–58. doi:10.1021/ef00040a016.
  • Davini, P., P. Ghetti, and D. Michele. 1996. Investigation of coal of the combustion of particles. Fuel 75 (9):1083–88.
  • De Las Obras-Loscertales, M., T. Mendiara, A. Rufas, L. F. De Diego, F. García-Labiano, P. Gayán, A. Abad, and J. Adánez. 2015. NO and N2O emissions in oxy-fuel combustion of coal in a bubbling fluidized bed combustor. Fuel 150:146–53. doi:10.1016/j.fuel.2015.02.023.
  • Du, S., W. Chen, and J. A. Lucas. 2010. Pulverized coal burnout in blast furnace simulated by a drop tube furnace. Energy 35 (2):576–81. doi:10.1016/j.energy.2009.10.028.
  • Hong, J., G. Chaudhry, J. G. Brisson, R. Field, M. Gazzino, and A. F. Ghoniem. 2009. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy 34 (9):1332–40. doi:10.1016/j.energy.2009.05.015.
  • Jang, H. N., J. H. Kim, S. K. Back, J. H. Sung, H. M. Yoo, H. S. Choi, and Y. C. Seo. 2016. Combustion characteristics of waste sludge at air and oxy-fuel combustion conditions in a circulating fluidized bed reactor. Fuel 170:92–99. doi:10.1016/j.fuel.2015.12.033.
  • Juma, M., Z. Koreňová, J. Markoš, J. Annus, and Ľ. Jelemenský. 2006. Pyrolysis and combustion of scrap tire. Petroleum Coal 48 (1):15–26.
  • Kandasamy, J., and I. Go. 2015. Pyrolysis, combustion, and steam gasification of various types of scrap tires for energy recovery.Energy Fuel 29 (1):346–354. doi:10.1021/ef502283s.
  • Katalambula, H., J. Hayashi, and T. Chiba. 1997. Dependence of single coal particle ignition mechanism on the surrounding volatile matter cloud. Energy Fuel 11 (5):1033–39.
  • Khatami, R., C. Stivers, K. Joshi, Y. A. Levendis, and A. F. Sarofim. 2012. Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O 2/N 2 and O 2/CO 2 atmospheres. Combust. Flame 159 (3):1253–71. doi:10.1016/j.combustflame.2011.09.009.
  • Khatami, R., C. Stivers, and Y. A. Levendis. 2012. Ignition characteristics of single coal particles from three different ranks in O 2/N 2 and O 2/CO 2 atmospheres. Combust. Flame 159 (12):3554–68. doi:10.1016/j.combustflame.2012.06.019.
  • Labaki, M., and M. Jeguirim. 2017. Thermochemical conversion of waste tyres—A review. Environ. Sci. Pollut. Res. 24 (11):9962–92. doi:10.1007/s11356-016-7780-0.
  • Lai, Z. Y., X. Q. Ma, Y. T. Tang, and H. Lin. 2011. A study on municipal solid waste (MSW) combustion in N2/O2 and CO2/O2 atmosphere from the perspective of TGA. Energy 36 (2):819–24. doi:10.1016/j.energy.2010.12.033.
  • Leung, D. Y. C., and C. L. Wang. 1998. Kinetic study of scrap tyre pyrolysis and combustion. J. Anal. Appl. Pyrolysis. 45 (2):153–69. doi:10.1016/S0165-2370(98)00065-5.
  • Li, S., W. Li, M. Xu, X. Wang, H. Li, and Q. Lu. 2015. The experimental study on nitrogen oxides and SO 2 emission for oxy-fuel circulation fluidized bed combustion with high oxygen concentration. FUEL 146:81–87. doi:10.1016/j.fuel.2014.12.089.
  • Li, X. G., B. G. Ma, L. Xu, Z. W. Hu, and X. G. Wang. 2006. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta 441 (1):79–83. doi:10.1016/j.tca.2005.11.044.
  • Li, Z., Q. Lu, and Y. Na. 2004. N2O and NO emissions from co-firing MSW with coals in pilot scale CFBC. Fuel Process. Technol. 85 (14):1539–49. doi:10.1016/j.fuproc.2003.10.025.
  • Liszka, M., and A. Zi. 2010. Coal-fired oxy-fuel power unit – process and system analysis. Energy 35 (2):943–51. doi:10.1016/j.energy.2009.
  • Liu, B., Z. Zhang, H. Zhang, H. Yang, and D. Zhang. 2014. An experimental investigation on the effect of convection on the ignition behaviour of single coal particles under various O2 concentrations. Fuel 116:77–83. doi:10.1016/j.fuel.2013.07.112.
  • Liu, J., J. Ma, L. Luo, H. Zhang, and X. Jiang. 2017. Pyrolysis of super fi ne pulverized coal. Part 5. Thermogravimetric analysis. Energy Convers. Manage. 154 (November):491–502. doi:10.1016/j.enconman.2017.11.041.
  • Lu, L., T. Namioka, and K. Yoshikawa. 2011. Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes. Appl. Energy 88 (11):3659–64. doi:10.1016/j.apenergy.2011.04.022.
  • Lupiáñez, C., I. Guedea, L. I. Irene Bolea, and L. M. R. Díez. 2013. Experimental study of SO2 and NOx emissions in fluidized bed oxy-fuel combustion. Fuel Process. Technol. 106:587–94. doi:10.1016/j.fuproc.2012.09.030.
  • Maffei, T., R. Khatami, S. Pierucci, T. Faravelli, E. Ranzi, and Y. A. Levendis. 2013. Experimental and modeling study of single coal particle combustion in O2/N2 and Oxy-fuel (O2/CO2) atmospheres. Combust. Flame 160 (11):2559–72. doi:10.1016/j.combustflame.2013.06.002.
  • Mastral, A. M., M. S. Callén, and T. García. 2000. Fluidized bed combustion (FBC) of fossil and nonfossil fuels. A comparative study. Energy Fuel 14 (2):275–81. doi:10.1021/ef9900536.
  • Molina, A., and C. R. Shaddix. 2007. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc. Combust. Inst. 31 (2):1905–12. doi:10.1016/j.proci.2006.08.102.
  • Moon, C., Y. Sung, S. Ahn, T. Kim, G. Choi, and D. Kim. 2013. Thermochemical and combustion behaviors of coals of different ranks and their blends for pulverized-coal combustion. Appl. Therm. Eng. 54 (1):111–19. doi:10.1016/j.applthermaleng.2013.01.009.
  • Onenc, S., S. Retschitzegger, N. Evic, N. Kienzl, and J. Yanik. 2018. Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal. Waste Manage. (Oxford) 71 (2018):192–99. doi:10.1016/j.wasman.2017.10.041.
  • Peng, W., Z. Liu, M. Motahari-Nezhad, M. Banisaeed, S. Shahraki, and M. Beheshti. 2016. A detailed study of oxy-fuel combustion of biomass in a circulating fluidized bed (CFB) combustor: Evaluation of catalytic performance of metal nanoparticles (Al, Ni) for combustion efficiency improvement. Energy 109 (x):1139–47. doi:10.1016/j.energy.2016.04.130.
  • Ponzio, A. 2008. Ignition of single coal particles in high-temperature oxidizers with various oxygen concentrations. Fuel 87 (6):974–87. doi:10.1177/154405910808701012.
  • Qiao, Y., L. Zhang, E. Binner, M. Xu, and C. Li. 2010. An investigation of the causes of the difference in coal particle ignition temperature between combustion in air and in O 2/CO 2. Fuel 89 (11):3381–87. doi:10.1016/j.fuel.2010.05.037.
  • Riaza, J., L. Álvarez, M. V. Gil, C. Pevida, J. J. Pis, and F. Rubiera. 2011. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor. Energy 36 (8):5314–19. doi:10.1016/j.energy.2011.06.039.
  • Riaza, J., M. V. Gil, L. Álvarez, C. Pevida, J. J. Pis, and F. Rubiera. 2012. Oxy-fuel combustion of coal and biomass blends. Energy 41 (1):429–35. doi:10.1016/j.energy.2012.02.057.
  • Riaza, J., R. Khatami, Y. A. Levendis, L. Álvarez, M. V. Gil, C. Pevida, F. Rubiera, and J. J. Pis. 2014. Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combust. Flame 161 (4):1096–108. doi:10.1016/j.combustflame.2013.10.004.
  • Sahajwalla, V., M. Zaharia, S. Kongkarat, R. Khanna, N. Saha-Chaudhury, and P. O’Kane. 2010. Recycling plastics as a resource for electric arc furnace (EAF) steelmaking: Combustion and structural transformations of metallurgical coke and plastic blends. Energy Fuel 24 (1):379–91. doi:10.1021/ef900875r.
  • Schulz, B., B. Sapich, E. Hamciuc, I. Sava, M. Bruma, T. Ko, J. Wagner, and J. Stumpe. 2006. New poly (amide-imide) s containing cinnamoyl and azobenzene groups y. Polym. Adv. Technol. 2005 (September):641–46.
  • Shaddix, C. R., and A. Molina. 2009. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc. Combust. Inst. 32 (2):2091–98. doi:10.1016/j.proci.2008.06.157.
  • Shan, F., Q. Lin, K. Zhou, Y. Wu, W. Fu, P. Zhang, L. Song, C. Shao, and B. Yi. 2017. An experimental study of ignition and combustion of single biomass pellets in air and oxy-fuel. Fuel 188:277–84. doi:10.1016/j.fuel.2016.09.069.
  • Singh, S., W. Nimmo, M. T. Javed, and P. T. Williams. 2011. Cocombustion of pulverized coal with waste plastic and tire rubber powders. Energy Fuel 25 (1):108–18. doi:10.1021/ef101246q.
  • Singh, S., W. Nimmo, and P. T. Williams. 2013. An experimental study of ash behaviour and the potential fate of ZnO/Zn in the Co-combustion of pulverised South African coal and waste tyre rubber. Fuel 111 (x):269–79. doi:10.1016/j.fuel.2013.04.026.
  • Tang, Y., X. Ma, Z. Lai, D. Zhou, and Y. Chen. 2013. Thermogravimetric characteristics and combustion emissions of rubbers and polyvinyl chloride in N 2/O 2 and CO 2/O 2 atmospheres. Fuel 104 (x):508–14. doi:10.1016/j.fuel.2012.06.047.
  • Tang, Y., X. Ma, Z. Lai, D. Zhou, H. Lin, and Y. Chen. 2012. NO x and SO 2 emissions from municipal solid waste (MSW) combustion in CO 2/O 2 atmosphere. Energy 40 (1):300–06. doi:10.1016/j.energy.2012.01.070.
  • Tang, Y. T., X. Q. Ma, Z. Y. Lai, and Y. Fan. 2015. Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N2/O2and CO2/O2atmospheres. Energy 90:1066–74. doi:10.1016/j.energy.2015.08.015.
  • Teng, H., C. S. Chyang, S. H. Shang, and J. A. Ho. 1997. Characterization of waste tire incineration in a prototype vortexing fluidized bed combustor. J. Air Waste Manag. Assoc. 47 (1):49–57. doi:10.1080/10473289.1997.10464409.
  • Toftegaard, M. B., J. Brix, P. A. Jensen, P. Glarborg, and A. D. Jensen. 2010. Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci. 36 (5):581–625. doi:10.1016/j.pecs.2010.02.001.
  • Wang, X., Q. Lin, C. Wang, K. Zhou, P. Zhang, F. Li, and Y. Lei. 2019. The ignition characteristics and combustion processes of coal gangue under different hot coflow conditions in O 2/CO 2 atmosphere: In pellet form. Combust. Sci. Technol. 191 (3):419–34. doi:10.1080/00102202.2018.1493468.
  • Wu, T., M. Gong, E. Lester, and P. Hall. 2013. Characteristics and synergistic effects of co-firing of coal and carbonaceous wastes. Fuel 104:194–200. doi:10.1016/j.fuel.2012.07.067.
  • Yin, C., and J. Yan. 2016. Oxy-fuel combustion of pulverized fuels : Combustion fundamentals and modeling. Appl. Energy 162:742–62. doi:10.1016/j.apenergy.2015.10.149.
  • Zheng, L., J. Song, C. Li, Y. Gao, P. Geng, B. Qu, and L. Lin. 2014. Preferential policies promote municipal solid waste (MSW) to energy in China: Current status and prospects. Renewable Sustainable Energy Rev. 36:135–48. doi:10.1016/j.rser.2014.04.049.
  • Zhou, K., Q. Lin, H. Hu, H. Hu, and L. Song. 2017. The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atmosphere. Energy 136:173–84. doi:10.1016/j.energy.2016.02.038.
  • Zhou, K., Q. Lin, H. Hu, F. Shan, W. Fu, P. Zhang, X. Wang, and C. Wang. 2018. Ignition and combustion behaviors of single coal slime particles in CO2/O2 atmosphere. Combust. Flame 194:250–63. doi:10.1016/j.combustflame.2018.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.