450
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Effects of Transverse Jet Parameters on Flame Propagation and Detonation Transition in Hydrogen–Oxygen–Argon Mixture

, ORCID Icon, , &
Pages 1516-1537 | Received 15 Aug 2019, Accepted 29 Nov 2019, Published online: 05 Dec 2019

References

  • Ayu, A., T. Nobuyuki, D. Edyta, and H. A. Koichi. 2018. Two-dimensional numerical simulation of detonation transition with multi-step reaction model: Effects of obstacle height. Combust. Sci. Technol. 191:4. doi:10.1080/00102202.2018.1498849.
  • Cai, X. D., J. H. Liang, R. Deiterding, Y. Mahmoudi, and M. B. Sun. 2018. Experimental and numerical investigations on propagating modes of detonations: Detonation wave/boundary layer interaction. Combust. Flame 190:201. doi:10.1016/j.combustflame.2017.11.015.
  • Cai, X. D., J. H. Liang, R. Deiterding, Y. G. Che, and Z. Y. Lin. 2016. Adaptive mesh refinement based simulations of three-dimensional detonation combustion in supersonic combustible mixtures with a detailed reaction model. Int. J. Hydrogen Energy 41:3222. doi:10.1016/j.ijhydene.2015.11.093.
  • Cai, X. D., J. H. Liang, Z. Y. Lin, R. Deiterding, and Y. Liu. 2014. Parametric study of detonation initiation using a hot jet in supersonic combustible mixtures. Aerosp. Sci. Technol. 39:442. doi:10.1016/j.ast.2014.05.008.
  • Carnasciali, F., J. H. S. Lee, R. Knystautas, and F. Fineschi. 1991. Turbulent jet initiation of detonation. Combust. Flame 84:170. doi:10.1016/0010-2180(91)90046-E.
  • Chambers, J., and K. A. Ahmed. 2017. Turbulent flame augmentation using a fluidic jet for deflagration-to-detonation. Fuel 199:616. doi:10.1016/j.fuel.2017.03.023.
  • Ciccarelli, G., and S. Dorofeev. 2008. Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci. 34:499. doi:10.1016/j.pecs.2007.11.002.
  • Deiterding, R. 2003. Parallel adaptive simulation of multi-dimensional detonation structures. Ph.D. thesis., Brandenburg University of Technology Cottbus–Senftenberg.
  • Deiterding, R. 2009. A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Comput. Struct. 87:769. doi:10.1016/j.compstruc.2008.11.007.
  • Deiterding, R., and S. Wood. 2013. Parallel adaptive fluid-structure interaction simulation of explosions impacting on building structures. Comput. Fluids 88:719. doi:10.1016/j.compfluid.2013.05.009.
  • Dorofeev, S. B., A. V. Bezmelnitsin, V. P. Sidorov, J. G. Yankin, and I. D. Matsukov. 1996. Turbulent jet initiation of detonation in hydrogen-air mixtures. Shock Waves 6:73. doi:10.1007/BF02515190.
  • Edyta, D., and A. K. Hayashi. 2013. Auto-ignition and DDT driven by shock wave – Boundary layer interaction in oxyhydrogen mixture. Int. J. Hydrogen Energy 38:4185. doi:10.1016/j.ijhydene.2013.01.111.
  • Eichert, H., and M. Fischer. 1986. Combustion-related safety aspects of hydrogen in energy applications. Int. J. Hydrogen Energy 11,11. doi:10.1016/0360-3199(86)90049-2.
  • Gamezo, V. N., T. Ogawa, and E. S. Oran. 2007. Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen-air mixture. Proc. Combust. Inst. 31:2463. doi:10.1016/j.proci.2006.07.220.
  • Gamezo, V. N., T. Ogawa, and E. S. Oran. 2008. Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing. Combust. Flame 155:302. doi:10.1016/j.combustflame.2008.06.004.
  • Goodwin, D.G., R. L. Speth, H. K. Moffat, and B. W. Weber. 2018. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.4.0. https://www.cantera.org. doi: 10.5281/zenodo.1174508.
  • Han, W. H., Y. Gao, and C. K. Law. 2017. Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: An integrated mechanistic study. Combust. Flame 176:285. doi:10.1016/j.combustflame.2016.10.010.
  • Han, X., J. Zhou, Z. Y. Lin, and Y. Liu. 2013. Deflagration-to-detonation transition induced by hot jets in a supersonic premixed airstream. Chin. Phys. Lett. 30:054701. doi:10.1088/0256-307X/30/5/054701.
  • Huang, R. F., and J. Lan. 2005. Characteristic modes and evolution processes of shear-layer vortices in an elevated transverse jet. Phys. Fluids 17:034103. doi:10.1063/1.1852575.
  • Johansen, C., and G. Ciccarelli. 2010. Numerical simulations of the flow field ahead of an accelerating flame in an obstructed channel. Combust. Theor. Model 14:235. doi:10.1080/13647830.2010.483020.
  • Karagozian, and R. Ann. 2014. The jet in crossflow. Phys. Fluids 26:101303. doi:10.1063/1.4895900.
  • Kessler, D. A., V. N. Gamezo, and E. S. Oran. 2010. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems. Combust. Flame 157:2063. doi:10.1016/j.combustflame.2010.04.011.
  • Knox, B. W. 2011. The fluidic obstacle technique: An approach for enhancing deflagration to-detonation transition in pulsed detonation engines. M.S. Thesis, The State University of New York at Buffalo.
  • Knox, B. W., D. J. Forliti, C. A. Stevens, J. L. Hoke, and F. R. Schauer 2010. Unsteady flame speed control and deflagration-to-detonation transition enhancement using fluidic obstacles. In Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit Conference. Orlando. Paper No. 2010-151.doi: 10.2514/6.2010-151.
  • Knox, B. W., D. J. Forliti, C. A. Stevens, J. L. Hoke, and F. R. Schauer 2011. A comparison of fluidic and physical obstacles for deflagration-to-detonation transition. In Proceedings of the 49th Aerospace Sciences Meeting and Exhibit Conference. Orlando. Paper No. 2011-587. doi: 10.2514/6.2011-587.
  • Lee, J. H. S. 2008. The Detonation Phenomenon. London: Cambridge University Press.
  • Lee, J. H. S., and I. O. Moen. 1980. The mechanism of transition from deflagration to detonation in vapor cloud explosion. Prog. Energy Combust. 6:359. doi:10.1016/0360-1285(80)90011-8.
  • Lee, S. Y., J. Watts, S. Saretto, S. Pal, C. Conrad, R. Woodward, and R. Santoro. 2004. Deflagration to detonation transition processes by turbulence-generating obstacles in pulse detonation engines. J. Propul. Power 20:1026. doi:10.2514/1.11042.
  • Liberman, M. A., M. F. Ivanov, A. D. Kiverin, M. S. Kuznetsov, A. A. Chukalovsky, and T. V. Rakhimova. 2010. Deflagration-to-detonation transition in highly reactive combustible mixtures. Acta Astronaut 67:688. doi:10.1016/j.actaastro.2010.05.024.
  • McGarry, J. P., and K. A. Ahmed 2015. Laminar deflagrated flame interaction with a fluidic jet flow for deflagration-to-detonation flame acceleration. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando. Paper No. 2015-4096. doi: 10.2514/6.2015-4096.
  • McGarry, J. P., and K. A. Ahmed. 2017. Flame-turbulence interaction of laminar premixed deflagrated flames. Combust. Flame 176:439. doi:10.1016/j.combustflame.2016.11.002.
  • Oran, E. S., and V. N. Gamezo. 2007. Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame 148:4. doi:10.1016/j.combustflame.2006.07.010.
  • Peng, H., Y. Huang, R. Deiterding, Z. Y. Luan, F. Xing, and Y. C. You. 2018. Effects of jet in crossflow on flame acceleration and deflagration to detonation transition in methane–Oxygen mixture. Combust. Flame 198:69. doi:10.1016/j.combustflame.2018.08.023.
  • Petukhov, V. A., I. M. Naboko, and V. E. Fortov. 2009. Explosion hazard of hydrogen-air mixtures in the large volumes. Int. J. Hydrogen Energy 34:24. doi:10.1016/j.ijhydene.2009.02.064.
  • Roy, G. D., S. M. Frolov, A. A. Borisova, and D. W. Netzer. 2004. Pulse detonation propulsion: Challenges, current status, and future perspective. Prog. Energy Combust. Sci. 30:545. doi:10.1016/j.pecs.2004.05.001.
  • Wang, Y., W. Han, R. Deiterding, and Z. Chen. 2018. Effects of disturbance on detonation initiation in H2/O2/N2 mixture. Phys. Rev. Fluids 3:123201. doi:10.1103/PhysRevFluids.3.123201.
  • Wang, Y. J., W. Fan, S. X. Li, Q. B. Zhang, and H. B. Li 2017. Numerical simulations of flame propagation and DDT in obstructed detonation tubes filled with fluidic obstacles. In Proceedings of the 21st AIAA International Space Planes and Hypersonic Technologies Conference. Xiamen. Paper No. 2017-2382. doi: 10.2514/6.2017-2382.
  • Westbrook, C. K. 1982. Chemical kinetics of hydrocarbon oxidation in gaseous detonations. Combust. Flame 46:191. doi:10.1016/0010-2180(82)90015-3.
  • Yuan, L. L., and R. L. Street. 1998. Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10:2323. doi:10.1063/1.869751.
  • Zeldovich, Y. B. 1980. Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39:211. doi:10.1016/0010-2180(80)90017-6.
  • Zhang, Y. L., L. Zhou, J. S. Gong, H. D. Ng, and H. H. Teng. 2018. Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model. Phys. Fluids 30:106110. doi:10.1063/1.5054063.
  • Zhao, S., Y. Fan, H. Lv, and B. Jia. 2017. Effects of a jet turbulator upon flame acceleration in a detonation tube. Appl. Therm. Eng. 115:33. doi:10.1016/j.applthermaleng.2016.12.068.
  • Ziegler, J. L., R. Deiterding, J. E. Shepherd, and D. I. Pullin. 2011. An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry. J. Comput. Phys. 230:7598. doi:10.1016/j.jcp.2011.06.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.