262
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigation of Thermophysical Properties and Combustion Characteristics of Thickened Jet Fuel

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1914-1930 | Received 15 Sep 2019, Accepted 13 Jan 2020, Published online: 02 Feb 2020

References

  • Akita, K.. 1973. Some problems of flame spread along a liquid surface. Proc. Combust. Inst. 14 (1):1075–83. doi:10.1016/s0082-0784(73)80097-9.
  • ASTM D88/D88M. 2007. Standard test method for saybolt viscosity. West Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D93-18. 2018. Standard test methods for flash point by pensky-martens closed tester. West Conshohocken, PA: American Society for Testing and Materials.
  • Cai, J., F. Liu, and W. A. Sirignano. 2003. Three-dimensional structures of flames over liquid fuel pools. Combust. Sci. Technol. 175 (11):2113–39. doi:10.1080/714923188.
  • Degroote, E.. 2007. Control parameters of flame spreading in a fuel container. J. Therm. Anal. Calorim. 87 (1):149–51. doi:10.1007/s10973-006-7838-1.
  • Di Blasi, C., S. Crescitelli, and G. Russo. 1991. Model of oscillatory phenomena of flame spread along the surface of liquid fuels. Comput. Method. Appl. Mech. Eng. 90 (1–3):643–57. doi:10.1016/0045-7825(91)90176-7.
  • Gao, Z., S. Lin, J. Ji, and M. Li. 2019. An experimental study on combustion performance and flame spread characteristics over liquid diesel and ethanol-diesel blended fuel. Energy 170:349–55. doi:10.1016/j.energy.2018.12.130.
  • Glassman, I., and F. L. Dryer. 1981. Flame spreading across liquid fuels. Fire Saf. J. 3 (2):123–38. doi:10.1016/0379-7112(81)90038-2.
  • Glassman, I., W. A. Sirignano, and M. Summerfield. 1970. Physics of flame U.S. Army Ballistics Research Laboratories Report No.952. Princeton, New Jersey: Ballistics Research Laboratory, U. S. Army.
  • Glasstone, S., K. J. Laidler, and H. J. Eyring. 1941. The theory of rate process. New York: McGraw-Hill Book Company, Inc.
  • Goyal, V., Y. Tursyn, J. Kim, R. P. Lucht, and J. P. Gore. 2017. Flame spread measurements of alternative aviation fuels. Paper presented at the 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas.
  • Grunberg, L., and A. H. Nissan. 1949. Mixture law for viscosity. Nature 164 (4175):799–800. doi:10.1038/164799b0.
  • Houghton, E. L., P. W. Carpenter, S. H. Collicott, and D. T. Valentine. 2013. Chapter 8 - Viscous flow and boundary layers. In Aerodynamics for engineering students, ed. E. L. Houghton, P. W. Carpenter, S. H. Collicott, and D. T. Valentine, 479–600. Boston: Butterworth-Heinemann. http://www.ddbst.com/en/EED/PCP/SFT_C174.php.
  • Ji, J., S. Lin, C. Zhao, K. Li, and Z. Gao. 2016. Experimental study on initial temperature influence on flame spread characteristics of diesel and gasoline-diesel blends. Fuel 178:283–89. doi:10.1016/j.fuel.2016.03.072.
  • Kawabe, H., and M. Ishimaru. 2002. Study on bearing lubricity with 2-stroke engine oil. Tokyo, Japan: Yamaha Motor Co., Ltd./Nippon Oil Corporation.
  • Kim, I., D. N. Schiller, and W. A. Sirignano. 1998. Axisymmetric flame spread across propanol pools in normal and zero gravities. Combust. Sci. Technol. 139 (1):249–75. doi:10.1080/00102209808952090.
  • Kong, D., X. He, F. Khan, G. Chen, P. Ping, H. Yang, and R. Peng. 2019. Small scale experiment study on burning characteristics for in-situ burning of crude oil on open water. J. Loss. Prevent. Proc. 60:46–52. doi:10.1016/j.jlp.2019.04.007.
  • Lapuerta, M., J. Rodríguez-Fernández, D. Fernández-Rodríguez, and R. Patiño-Camino. 2017. Modeling viscosity of butanol and ethanol blends with diesel and biodiesel fuels. Fuel 199:332–38. doi:10.1016/j.fuel.2017.02.101.
  • Li, M., S. Lu, R. Chen, and C. Wang. 2017a. Pulsating behaviors of flame spread across n-butanol fuel surface. Appl. Therm. Eng. 112:1445–51. doi:10.1016/j.applthermaleng.2016.10.001.
  • Li, M., C. Wang, H. Sun, H. Liu, S. Yang, and A. Zhang. 2017b. Heat and mass transfer of flame spread over jet fuel at sub-flash temperature. Exp. Therm. Fluid Sci. 89:276–83. doi:10.1016/j.expthermflusci.2017.08.022.
  • Li, X., R. Wang, S. Huang, Y. Wang, and H. Shi. 2018. A capillary rise method for studying the effective surface tension of monolayer nanoparticle-covered liquid marbles. Soft. Matter. 14 (48):9877–84. doi:10.1039/c8sm01846d.
  • Mackinven, R., J. G. Hansel, and I. Glassman. 1970. Influence of laboratory parameters on flame spread across liquid fuels. Combust. Sci. Technol. 1 (4):293–306. doi:10.1080/00102206908952209.
  • Matsuoka, T., K. Nakashima, T. Yamazaki, and Y. Nakamura. 2018. Geometrical effects of a narrow channel on flame spread in an opposed flow. Combust. Sci. Technol. 190 (3):409–24. doi:10.1080/00102202.2017.1394848.
  • Murad, R. J., J. Lamendola, H. Isoda, and M. Summerfield. 1970. A study of some factors influencing the ignition of a liquid fuel pool. Combust. Flame 15 (3):289–98. doi:10.1016/0010-2180(70)90008-8.
  • Pimputkar, S. M., and S. Ostrach. 1980. Transient thermocapillary flow in thin liquid layers. Phys. Fluids 23:1281–85. doi:10.1063/1.863136.
  • Poling, B. E., J. M. Prausnitz, and J. P. O’connell. 2001. The properties of gases and liquids. 5th ed. New York: Mcgraw-hill.
  • Ransom, T. C., D. Roy, J. E. Puskas, G. Kaszas, and C. M. Roland. 2019. Molecular weight dependence of the viscosity of highly entangled polyisobutylene. Macromolecules 52 (14):5177–82. doi:10.1021/acs.macromol.9b00993.
  • Ross, H. D.. 1994. Ignition of and flame spread over laboratory-scale pools of pure liquid fuels. Prog. Energ. Combust. 20 (1):17–63. doi:10.1016/0360-1285(94)90005-1.
  • Ross, H. D., and F. J. Miller. 1996. Detailed experiments of flame spread across deep butanol pools. Proc. Combust. Inst. 26 (1):1327–34. doi:10.1016/s0082-0784(96)80351-1.
  • Sugden, S.. 1925. The determination of surface tension from the rise in capillary tubes. J. Am. Chem. Soc. 47 (1):60–64. doi:10.1021/ja01678a006.
  • Takahashi, K., A. Ito, Y. Kudo, T. Konishi, and K. Saito. 2008. Scaling sub-surface layer circulation induced by pulsating flame spread over liquid fuels. In Progress in scale modeling, ed. K. Saito, 149–62. Berlin, Germany: Springer Netherlands.
  • Takahashi, K., Y. Kodaira, Y. Kudo, A. Ito, and K. Saito. 2007. Effect of oxygen on flame spread over liquids. Proc. Combust. Inst. 31:2625–31. doi:10.1016/j.proci.2006.07.196.
  • White, D., C. L. Beyler, C. Fulper, and J. Leonard. 1997. Flame spread on aviation fuels. Fire Saf. J. 28 (1):1–31. doi:10.1016/s0379-7112(96)00070-7.
  • Zamashchikov, V. V. 2009. Flame spread across shallow pools in modulated opposed air flow in narrow tube. Combust. Sci. Technol. 181 (1):176–89. doi:10.1080/00102200802424484.
  • Zamashchikov, V. V., A. A. Korzhavin, and E. A. Chinnov. 2014. Combustion of a liquid fuel in a rectangular channel. Combust. Explosion Shock Waves 50 (4):381–86. doi:10.1134/s0010508214040030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.