145
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Self-sustained CO Combustion Induced by CuCe0.75Zr0.25Oy Catalysts with Different Pore-forming Methods

, , , , &
Pages 2045-2057 | Received 20 Oct 2019, Accepted 04 Feb 2020, Published online: 17 Feb 2020

References

  • Chen, A., X. J. Yu, Z. Yan, S. Miao, Y. Li, and S. Kuld. 2019. Structure of the catalytically active copper–ceria interfacial perimeter. Nat. Catal. 2:334-341.
  • Chen, H. L., H. M. Lee, S. H. Chen, and M. B. Chang. 2009. Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environ. Sci. Technol. 43 (7):2216–27.
  • He, C., B. T. Xu, J. W. Shi, N. L. Qiao, Z. P. Hao, and J. L. Zhao. 2015a. Catalytic destruction of chlorobenzene over mesoporous ACeOx (A = Co, Cu, Fe, Mn, or Zr) composites prepared by inorganic metal precursor spontaneous precipitation. Fuel Process. Tech. 130:179–87.
  • He, C., Y. K. Yu, J. W. Shi, Q. Shen, J. S. Chen, and H. X. Liu. 2015b. Mesostructured Cu–Mn–Ce–O composites with homogeneous bulk composition for chlorobenzene removal: Catalytic performance and microactivation course. Mater. Chem. Phys. 157:87–100.
  • He, C., Y. K. Yu, L. Yue, N. L. Qiao, J. J. Li, Q. Shen, W. J. Yu, J. S. Chen, and Z. P. Hao. 2014. Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol. Appl. Catal. B 147:156–66.
  • Kang, R. N., X. L. Wei, F. Bin, Z. B. Wang, Q. L. Hao, and B. J. Dou. 2018a. Reaction mechanism and kinetics of co oxidation over a CuO/Ce0.75Zr0.25O2-δ, catalyst. Appl. Catal. A S0926860X1830365X. 565:46-58.
  • Kang, R. N., X. L. Wei, H. X. Li, and F. Bin. 2018b. Sol-gel enhanced mesoporous Cu-Ce-Zr catalyst for toluene oxidation. Combust. Sci. Technol. 190 (5):878–92.
  • Kim, H. H., S. Tsubota, M. Daté, A. Ogata, and S. Futamura. 2007. Catalyst regeneration and activity enhance-ment of Au/TiO2 by atmospheric pressure nonthermal plasma. Appl. Catal. A 329 (10):93–98.
  • Kima, K. D., I. S. Nama, and J. S. Chunga. 1994. Supported PdCl2 -CuCl2 catalysts for carbon monoxide oxidation 1. Effects of catalyst composition and reaction conditions. Appl. Catal. B 5 (1–2):103–15.
  • Kuo, C. P., H. T. Liao, C. C. K. Chou, and C. F. Wu. 2014. Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. Sci. Total. Environ. 472:880–87.
  • Liu, L., Z. Yao, B. Liu, and Dong. 2010. Correlation of structural characteristics with catalytic performance of CuO/CeXZr1-XO2, catalysts for NO reduction by CO. J. Catal. 275 (1):45–60.
  • Lu, H. F., Y. Zhou, W. F. Han, and Y. F. Chen. 2013. Promoting effect of ZrO2 carrier on activity and thermal stability of CeO2-based oxides catalysts for toluene combustion. Appl. Catal. A 464–465:101–08.
  • Luo, M. F., J. M. Ma, J. Q. Lu, Y. P. Song, and Y. J. Wang. 2007. High-surface area CuO–CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. J. Catal. 246:52–59.
  • Rivas, B. D., R. López-Fonseca, M. Á. Gutiérrez-Ortiz, and J. I. Gutiérrez-Ortiz. 2011a. Combustion of chlorinated VOCs using K-CeZrO4 catalysts. Catal.Today 176 (1):470–73.
  • Rivas, B. D., R. López-Fonseca, M. Á. Gutiérrez-Ortiz, and J. I. Gutiérrez-Ortiz. 2011b. Impact of induced chlorine-poisoning on the catalytic behaviour of Ce0.5Zr0.5O2 and Ce0.15Zr0.85O2 in the gas-phase oxidation of chlorinated VOCs. Appl. Catal. B 104:373–81.
  • Rivas, B. D., C. Sampedro, M. García-Real, R. López-FonsecA, and J. I. Gutiérrez-Ortiz. 2013. Promoted activity of sulphated Ce/Zr mixed oxides for chlorinated VOC oxidative abatement. Appl. Catal. B 90:225–35.
  • Su, Y., D. H. Wang, S. P. Bai, J. Jia, Y. Qin, and J. S. Jin. 2011. Study on Catalytic Oxidation of Carbon Monoxide by Low Temperature Plasma with Catalyst. Speci. Petrochemicals 28 (4):27–31.
  • Tang, W. X., X. F. Wu, G. Liu, S. D. Li, D. Y. Li, W. H. Li, and Y. F. Chen. 2015. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs. J. Rare Earth 33:62–69.
  • Xie, Y., J. F. Wu, G. J. Jing, H. Zhang, S. H. Zeng, and X. P. Tian. 2018. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl. Catal. B S092633731830804X. 239:665-676.
  • Yu, Q., F. Gao, and L. Dong. 2012. Recent progress of Cu-based catalysts for catalytic elimination of CO. Chin. J. Catal. V33 (8):1245–56.
  • Zheng, Y. N., K. Z. Li, H. Wang, Y. Wang, D. Tian, and Y. Wei. 2016. Structure dependence and reaction mechanism of CO oxidation: A model study on macroporous CeO2 and CeO2-ZrO2 catalysts. J. Catal. 344:365–77.
  • Zhou, P., H. Wang, J. Yang, J. Tang, D. Sun, and W. Tang. 2012. Bacteria cellulose nanofibers supported palladium(0) nanocomposite and its catalysis evaluation in heck reaction. Ind. Eng. Ches. Res. 51 (16):5743–48.
  • Zhu, X., X. Gao, R. Qin, Y. Zeng, R. Qu, and C. Zheng. 2015. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor. Appl. Catal. B 170:293–300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.