152
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Effect Chain Analysis of Supercritical Fuel Disintegration Processes Using an LES-based Entropy Generation Analysis

, , , &

References

  • Afridi, M., M. Qasim, and O. Makinde. 2019. Entropy generation due to heat and mass transfer in a flow of dissipative elastic fluid through a porous medium. J. Heat Transf. 141 (2):022002. doi:10.1115/1.4041951.
  • Ahn, Y., S. J. Bae, M. Kim, S. K. Cho, S. Baik, J. I. Lee, J. E. Cha et al. 2015. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 47(6):647–61. doi:10.1016/j.net.2015.06.009.
  • Bae, J., J. Yoo, and H. Choi. 2005. Direct numerical simulation of turbulent supercritical flows with heat transfer. Phys. Fluids 17 (10):105104. doi:10.1063/1.2047588.
  • Battista, F., F. Picano, and C. Casciola. 2014. Turbulent mixing of a slightly supercritical Van der Waals fluid at low-Mach number. Phys. Fluids 26 (5):055101. doi:10.1063/1.4873200.
  • Bejan, A. 1995. Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. Boca Raton, Flo, USA: CRC Press.
  • Bejan, A. 1996. Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics. Rev. Gen. Therm 35 (418–419):637–46. doi:10.1016/S0035-3159(96)80059-6.
  • Candel, S., G. Herding, R. Synder, P. Scouflaire, C. Rolon, L. Vingert, M. Habiballah, F. Grisch, M. Pealat, P. Bouchardy, et al. 1998. Experimental investigation of shear coaxial cryogenic jet flames. J. Propul. Power 14 (5):826–34. doi:10.2514/2.5346.
  • Chehroudi, B. 2012. Recent experimental efforts on high-pressure supercritical injection for liquid rockets and their implications. Int. J. Aerospace Eng. 121802.
  • Chehroudi, B., D. Talley, and A. Coy. 2002. Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures. Phys. Fluids 14:850. doi:10.1063/1.1430735.
  • Corrsin, S. 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22 (4):469–73. doi:10.1063/1.1699986.
  • Davis, D., and B. Chehroudi. 2007. Measurements in an acoustically driven coaxial jet under sub-, near- and supercritical conditions. J. Propul. Power 23 (2):364–74. doi:10.2514/1.19340.
  • Drost, M., and M. White. 1991. Numerical predictions of local entropy generation in an impinging jet. J. Heat Transf. 113 (4):823–29. doi:10.1115/1.2911209.
  • Esfahani, J., and P. Shahabi. 2010. Effect on non-uniform heating on entropy generation for laminar developing pipe flow of a high Prandtl number fluid. Energy Convers. Manag. 51 (11):2087–97. doi:10.1016/j.enconman.2010.02.022.
  • Farran, R., and N. Chakraborty. 2013. A direct numerical simulation-based analysis of entropy generation in turbulent premixed flames. Entropy 15 (5):1540–66. doi:10.3390/e15051540.
  • Ghasemi, E., D. M. McEligot, K. P. Nolan, J. Crepeau, A. Tokuhiro, R. S. Budwig, et al. 2013. Entropy generation in a transitional boundary layer region under the influence of freestream turbulence using transitional RANS models and DNS. Int. Commun. Heat Mass 10–16. doi:10.1016/j.icheatmasstransfer.2012.11.005.
  • Habiballah, M., M. Orain, F. Grisch, L. Vingert, P. Gicquel, et al. 2006. Experimental studies of high-pressure cryogenic flames on the mascotte facility. Combust. Sci. Technol 178 (1-3): 101–28. doi:10.1080/00102200500294486.
  • Herwig, H., and F. Kock. 2006. Local entropy production in turbulent shear flows: A tool for evaluating heat transfer performance. K. Therm. Sci. 15 (2): 159-67. doi:10.1007/s11630-006-0159-7
  • Huo, H., and V. Yang. 2017. Large-eddy simulation of supercritical combustion: Model validation against gaseous H2-O2 injector. J. Propul. Power 33 (5): 1–13. doi:10.2514/1.B36368.
  • Issa, R. 1985. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comp. Phys. 62 (1): 40–65. doi:10.1016/0021-9991(86)90099-9
  • Ji, Y., H.-C. Zhang, X. Yang, and L. Shi. 2017. Entropy generation analysis and performance evaluation of turbulent forced convective heat transfer to nanofluids. Entropy 19 (3):108. doi:10.3390/e19030108.
  • Jin, Y., and H. Herwig. 2014. Turbulent flow and Heat transfer in channels with shark skin surfaces: Entropy generation and its physical significance. Int. J. Heat Mass Transf. 70:10–22. doi:10.1016/j.ijheatmasstransfer.2013.10.063.
  • Juniper, M., A. Tripathi, P. Scouflaire, J.-C. Rolon, S. Candel, et al. 2000. Structure of cryogenic flames at elevated pressures. P. Combust. Inst 28 (1):1103–09. doi:10.1016/S0082-0784(00)80320-3.
  • Kawai, S. 2019. Heated transcritical and unheated non-transcritical turbulent boundary layers at supercritical pressures. J. Fluid Mech. 865:563–601. doi:10.1017/jfm.2019.13.
  • Kim, T., Y. Kim, and S. Kim. 2011. Numerical study of cryogenic liquid nitrogen jets at supercritical pressures. J. Supercrit. Fluids 56 (2): 152–63. doi:10.1016/j.supflu.2010.12.008.
  • Klein, M., A. Sadiki, and J. Janicka. 2003. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2):652–65. doi:10.1016/S0021-9991(03)00090-1.
  • Knez, Z., E. Markočič, M. Leitgeb, M. Primožič, M. Knez Hrnčič, M. Škerget, et al. 2014. Industrial applications of supercritical fluids: A review. Energy 77:235–43. doi:10.1016/j.energy.2014.07.044.
  • Ko, T., and K. Ting. 2006. Entropy generation and optimal analysis for laminar forced convection in curved rectangular ducts: A numerical study. Int. J. Therm. Sci. 45 (2): 138–50. doi:10.1016/j.ijthermalsci.2005.01.010.
  • Kock, F., and H. Herwig. 2004. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. Int. J. Heat Mass Transf. 47 (10–11):2205–15. doi:10.1016/j.ijheatmasstransfer.2003.11.025.
  • Kumar, S., M. Chauhan, and V. Varun. 2013. Numerical modeling of compression ignition engine: A review. Renew. Sust. Energy. Rev. 19:517–30. doi:10.1016/j.rser.2012.11.043.
  • Lapenna, P. 2018. Characterization of pseudo-boiling in a transcritical nitrogen jet. Phys. Fluids 30 (7):077106. doi:10.1063/1.5038674.
  • Lapenna, P., and F. Creta. 2017. Mixing under transcritical conditions: An a-priori study using direct numerical simulation. J. Supercrit. Fluids 128: 263–78. doi:10.1016/j.supflu.2017.05.005.
  • Lapenna, P., and F. Creta. 2019. Direct numerical simulation of transcritical jets at moderate Reynolds number. AIAA Journal 57 (6):2254–63. doi:10.2514/1.J058360.
  • Lilly, D. 1967. The representation of small-scale turbulence in numerical simulation experiment. Proc. IBM Sci. Comput. Sympos. Environ. Sci. 195–210.
  • Mayer, W., A. Schik, M. Schäffler, and H. Tamura. 2000. Injection and mixing processes in high-pressure liquid oxygen/gaseous hydrogen rocket combustors. J. Propul. Power 16 (5): 823–28. doi:10.2514/2.5647.
  • Mayer, W., A. H. A. Schik, B. Vielle, C. Chauveau, I. Gokalp, D. G. Talley, R. D. Woodward, et al. 1998. Atomization and breakup of cryogenic propellants under high-pressure subcritical conditions. J. Propul. Power 14 (5): 835–42. doi:10.2514/2.5348.
  • Mayer, W., and H. Tamura. 1996. Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine. Journal of Propulsion and Power 12 (6):1137–47. doi:10.2514/3.24154.
  • Mayer, W., J. Telaar, R. Branam, G. Schneider, J. Hussong et al. 2003. Raman measurements of cryogenic injection at supercritical pressure. Heat and Mass Transfer. 39(8–9):709–19. doi:10.1007/s00231-002-0315-x.
  • Messerschmid, E., and S. Fasoulas. 2011. Raumfahrtsysteme. Berlin Heidelberg: Springer-Verlag.
  • Mohensi, M., and M. Bazargan. 2014. Entropy generation in turbulent mixed convection heat transfer to highly variable property pipe flow of supercritical fluids. Energy Convers. Manag. 87: 552–58. doi:10.1016/j.enconman.2014.07.013.
  • Müller, H., et al. 2015. Large-eddy simulation of nitrogen injection at trans- and supercritical conditions. Phys. Fluids:015102.
  • Nicoud, F., and F. Ducros. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3):183–200. doi:10.1023/A:1009995426001.
  • NIST, 2020. NIST Chemistry WebBook, SRD 69. [Online] Available at: https://webbook.nist.gov/chemistry/fluid
  • Oefelein, J. 2006. Mixing and combustion of cryogenic oxygen-hydrogen shear-coaxial jet flames at supercritical pressure. Combust. Sci. Technol. 178 (1-3): 229–52. doi:10.1080/00102200500325322.
  • Okong’o, N., and J. Bellan. 2002. Direct numerical simulations of transitional supercritical binary mixing layers: Heptane and nitrogen. J. Fluid Mech. 464:1–34. doi:10.1017/S0022112002008480.
  • Oschwald, M., and A. Schik. 1999. Supercritical nitrogen free jet investigated by spontaneous raman scattering. Exp. Fluids 27 (6):497–506. doi:10.1007/s003480050374.
  • Oschwald, M., A. Schik, M. Klar, and W. Mayer. 1999. Investigation of coaxial LN2/GH2-injection at supercritical pressure by spontaneous raman scattering. AIAA 99–2887. doi:10.2514/6.1999-2887.
  • Oschwald, M., J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, D. Talley, et al. 2006. Injection of fluids into supercritical environments. Combust. Sci. Technol 178 (1-3): 49–100. doi:10.1080/00102200500292464.
  • Patankar, S., and D. Spalding. 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Tran. 15 (10):1787–806. doi:10.1016/0017-9310(72)90054-3.
  • Petit, X., G. Ribert, G. Lartigue, and P. Domingo. 2013. Large-eddy simulation of supercritical fluid injection. J. Supercrit. Fluids 84:61–73. doi:10.1016/j.supflu.2013.09.011.
  • Ries, F. 2019. Numerical Modeling and Prediction of Irreversibilities in Sub- and Supercritical Turbulent Near-Wall Flows. Darmstadt, Germany: Dissertation auf TUprints.
  • Ries, F., J. Janicka, and A. Sadiki. 2017. Thermal transport and entropy production mechanisms in a turbulent round jet at supercritical conditions. Entropy 19(8): 404. doi:10.3390/e19080404.
  • Ries, F., J. Janicka, A. Sadiki et al. 2019. Entropy generation analysis and thermodynamic optimization of jet impingement cooling using large eddy simulation. Entropy. 21(2):129. doi:10.3390/e21020129.
  • Ries, F., K. Nishad, L. Dressler, J. Janicka, A. Sadiki et al. 2018b. Evaluating large eddy simulation results based on error analysis. Theor. Comp. Fluid Dyn. 32(6):733–52. doi:10.1007/s00162-018-0474-0.
  • Ries, F., Y. Li, D. Klingenberg, K. Nishad, J. Janicka, A. Sadiki et al. 2018a. Near-wall thermal processes in an inclined impinging jet: analysis of heat transport and entropy generation mechanisms. Energies. 11(6):1354. doi:10.3390/en11061354.
  • Ruiz, A., G. Lacaze, J. C. Oefelein, R. Mari, B. Cuenot, L. Selle, T. Poinsot et al. 2016. Numerical benchmark for high-Reynolds-number supercritical flows with large density gradients. AIAA Journal. 54(5):1445–60. doi:10.2514/1.J053931.
  • Safari, M., F. Hadi, and M. Sheikhi. 2014. Progress in the prediction of entropy generation in turbulent reacting flows using large eddy simulation. Entropy 16 (10):5159–77. doi:10.3390/e16105159.
  • Sahin, A., and R. Ben-Mansour. 2003. Entropy generation in laminar fluid flow through a circular pipe. Entropy 5 (5):404–16. doi:10.3390/e5050404.
  • Saqr, K., A. Shehata, A. Taha, and M. ElAzm. 2016. CFD modelling of entropy generation in turbulent pipe flow: Effects of temperature difference and swirl intensity. Appl. Therm. Eng. 100:999–1006. doi:10.1016/j.applthermaleng.2016.02.014.
  • Schmandt, B., and H. Herwig. 2011. Diffusor and nozzle design optimization by entropy generation minimization. Entropy 13 (7):1380–402. doi:10.3390/e13071380.
  • Schmidt, H., and U. Schumann. 1989. Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200:511–62. doi:10.1017/S0022112089000753.
  • Schmitt, T., L. Selle, A. Ruiz, and B. Cuenot. 2010. Large-eddy simulation of supercritical pressure round jets. AIAA Journal 48 (9):2133–44. doi:10.2514/1.J050288.
  • Sciacovelli, A., V. Verda, and E. Sciubba. 2015. Entropy generation analysis as a design tool – a review. Renew. Sust. Energy. Rev. 43:1167–81. doi:10.1016/j.rser.2014.11.104.
  • Shuja, S., B. Yibas, and M. Budair. 2001. Local entropy generation in an impinging jet: Minimum entropy concept evaluating various turbulence models. Comput. Methods Appl. Math. Eng 190 (28):3623–44. doi:10.1016/S0045-7825(00)00291-7.
  • Sierra-Pallares, J., G. Del Valle, J. García-Carrascal, and F. Ruiz. 2016. Numerical study of supercritical and transcritical injection using different prandtl numbers: A second law analysis. J. Supercrit. Fluids 115: 86–98. doi:10.1016/j.supflu.2016.05.001.
  • Singla, G., P. Scouflaire, J.-C. Rolon, and S. Candel. 2005. Transcritical oxygen/transcritical or supercritical methane combustion. P. Combust. Inst 30 (2):2921–28. doi:10.1016/j.proci.2004.08.063.
  • Singla, G., P. Scouflaire, J.-C. Rolon, and S. Candel. 2007. Flame stabilization in high pressure LOx/GH2 and GCH4 combustion. P. Combust. Inst. 31 (2): 2215–22. doi:10.1016/j.proci.2006.07.094.
  • Som, S., and A. Datta. 2008. Thermodynamic irreversibilities and exergy balance in combustion processes. Prog. Energy. Combust. 34 (3): 351–76. doi:10.1016/j.pecs.2007.09.001.
  • Torabi, M., M. Torabi, M. Yazdi, and G. Peterson. 2019. Fluid flow, heat transfer and entropy generation analysis of turbulent forced convection through isotropic porous media using RANS models. Int. J. Heat Mass Transf. 132: 443–61. doi:10.1016/j.ijheatmasstransfer.2018.12.020.
  • Tramecourt, N., S. Menon, and J. Amaya. 2004. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit: Joint Propulsion Conferences. s.l., s.n.
  • Traxinger, C., et al. 2017. Experimental and numerical investigation of phase separation due to multi-component mixing at high-pressure conditions. Physical Review Fluids
  • van Leer, B. 1974. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14 (4):361–170. doi:10.1016/0021-9991(74)90019-9.
  • Wang, W., Y. Zhang, J. Liu, Z. Wu, B. Li, B. Sundén, et al. 2018. Entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes. Numer. Heat Transf. A-Appl 73 (11): 788–805. doi:10.1080/10407782.2018.1459137.
  • Yapici, H., N. Kayatas, B. Albayrak, and G. Bastürk. 2005. Numerical calculation of local entropy generation in a methane-air burner. Energy Convers. Manag. 46 (11–12):1885–919. doi:10.1016/j.enconman.2004.09.007.
  • Ziefuss, M., N. Karimi, F. Ries, A. Sadiki, and A. Mehdizadeh. 2019. Entropy generation assessment for wall-bounded turbulent shear flows based on reynolds analogy assumptions. Entropy 21 (12):1157. doi:10.3390/e21121157.
  • Zips, J., C. Traxinger, and M. Pfitzner. 2019. Time-resolved flow field and thermal loads in a single-element GOx/GCH4 rocket combustor. Int. J. Heat Mass Transf. 143:118474. doi:10.1016/j.ijheatmasstransfer.2019.118474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.