182
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An Experimental Investigation on Flame Stability and Lean Extinction Limit in Tubular Flame Burners Operating on Jet Fuel

, , , , & ORCID Icon
Pages 1027-1043 | Received 21 Mar 2020, Accepted 19 Jul 2020, Published online: 29 Jul 2020

References

  • Baranger, P., M. Orain, and F. Grisch (2013). Fluorescence spectroscopy of kerosene vapour: Application to gas turbines. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.
  • Clarke., J. F. 1973. Diffusion Flame Stability. Combust. Sci. Technol. 7 (6):241–43. doi:https://doi.org/10.1080/00102207308952364.
  • Dhanuka, S. K., J. E. Temme, and J. F. Driscoll. 2011. Lean-limit combustion instabilities of a lean premixed prevaporized gas turbine combustor. Proc. Combust. Inst. 33 (2):2961–66.
  • Dunn-Rankin, D. 2008. Lean combustion-technology and control. New York: Academic Press.
  • Feng, Y., Q. Wenyuan, M. H. Baghaei, Y. Zhang, and D. Zhao. 2019. Investigation on a novel type of tubular flame burner with multi-stage partially-premixing features for liquid-fueled gas turbine. Combust. Sci. Technol. doi:https://doi.org/10.1080/00102202.2019.1651298.
  • Glassman, I., R. A. Yetter, and N. G. Glumac. 2014. Combustion. New York: Academic press.
  • Grimaldi, C. N., L. Postrioti, C. Stan, and R. Troger Analysis method for the spray characteristics of a GDI system with high pressure modulation. SAE technical paper 2000-01-1043, 2000.
  • Hagiwara, R., M. Okamoto, S. Ishizuka, H. Kobayashi, A. Nakamura, and M. Suzuki. 2000. Combustion characteristics of a tubular flame burner for methane. J. Soc. Mech. Eng. Trans. B 66 (652):186–92.
  • Hung, D. L. S., D. M. Chmiel, and L. E. Markle Application of an imaging-based diagnostic technique to quantify the fuel spray variations in a direct-injection spark-ignition engine. SAE technical paper 2003-01-0062, 2003.
  • Ishizuka, S. 1993. Characteristics of tubular flames. Prog. Energy Combust. Sci. 19 (3):187–226.
  • Ishizuka, S., and D. Dunn-Rankin. 2013. Tubular combustion. New York: Momentum Press.
  • Ishizuka, S., T. Motodamari, and D. Shimokuri. 2007. Rapidly mixed combustion in a tubular flame burner. Proc. Combust. Inst. 31 (1):1085–92.
  • Kee, R. J., A. M. Colclasure, H. Zhu, and Y. Zhang. 2008. Modeling tangential injection into ideal tubular flames. Combust. Flame 152 (1–2):114–24.
  • Lefebvre, A. H. 2000. Fifty years of gas turbine fuel injection. Atomization Sprays 10:3–5. doi:https://doi.org/10.1615/AtomizSpr.v10.i3-5.40.
  • Li, S., Y. Zhang, and W. Qi. 2018. Quantitative study on the influence of bubble explosion on evaporation characteristics of flash boiling spray using UV-LAS technique. Exp. Therm. Fluid Sci.98:472–79. doi:https://doi.org/10.1016/j.expthermflusci.2018.03.025.
  • Lieuwen, T., and K. McManus. 2003. Introduction: Combustion dynamics in lean-premixed prevaporized (LPP) gas turbines. J. Propul. Power 19 (5):721–721.
  • Mao, Y., L. Yu, Z. Wu, W. Tao, S. Wang, C. Ruan, L. Zhu, and X. Lu. 2019. Experimental and kinetic modeling study of ignition characteristics of RP-3 kerosene over low-to-high temperature ranges in a heated rapid compression machine and a heated shock tube[J]. Combust. Flame 203 (MAY):157–69.
  • Maron Sauer, V., and D. Dunn-Rankin. 2018. Liquid fuel nonpremixed swirl-type tubular flame burner. Combust. Sci. Technol. doi:https://doi.org/10.1080/00102202.2018.1531394.
  • Molière, M. 2000. Stationary gas turbines and primary energies: A review of fuel influence on energy and combustion performances. Int. J. Therm. Sci. 39 (2):141–72. doi:https://doi.org/10.1016/S1290-0729(00)00236-2.
  • Pan, G., H. T. Zheng, Z. B. Zhang, X. Chen, and Q. Liu. 2014. Numerical simulation on combustion flow field in combustor with reformed gas and kerosene. Tuijin Jishu/J. Propul. Technol. 35 (8):1102–09.
  • Pitz, R. W., S. Hu, and P. Wang. 2014. Tubular premixed and diffusion flames: Effect of stretch and curvature. Prog. Energy Combust. Sci. 42:1–34. doi:https://doi.org/10.1016/j.pecs.2014.01.003.
  • Ren, S., L. Jiang, H. Yang, D. Zhao, and X. Wang. 2019. Comparative study on the combustion performance in localized stratified and rapidly mixed swirling tubular flame burners. Combust. Sci. Technol. 3:1–19.
  • Shi, B., J. Hu, and S. Ishizuka. 2015. Carbon dioxide diluted methane/oxygen combustion in a rapidly mixed tubular flame burner. Combust. Flame 162 (2):420–30.
  • Shi, B., D. Shimokuri, and S. Ishizuka. 2013. Methane/oxygen combustion in a rapidly mixed type tubular flame burner. Proc. Combust. Inst. 34 (2):3369–77.
  • Shimokuri, D., Y. Shiraga, K. Ishii, H. Toh, and S. Ishizuka. 2014. An experimental study on the high frequency oscillatory combustion in tubular flame burners. Combust. Flame 161 (8):2025–37.
  • Smallwood, G., and B. Deschamps Flame surface density measurements with PLIF in an SI engine. SAE technical paper 962088, 1996.
  • Zhang, Y., S. Ishizuka, H. Zhu, and R. J. Kee. 2009. Effects of stretch and pressure on the characteristics of premixed swirling tubular methane-air flames. Proc. Combust. Inst. 32 (1):1149–56.
  • Zhang, Y., D. Shimokuri, Y. Mukae, and S. Ishizuka. 2005. Flow field in swirl-type tubular flame burner. JSME Int J. Ser. B 48 (4):830–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.