339
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Comparison on Laser Ignition and Combustion Characteristics of Nano- and Micron-Sized Aluminum

, , &
Pages 341-353 | Received 20 Dec 2019, Accepted 21 Jul 2020, Published online: 06 Aug 2020

References

  • Aluker, E. D., A. G. Krechetov, A. Y. Mitrofanov, D. R. Nurmukhametov, and M. M. Kuklja. 2011. Laser initiation of energetic materials: Selective photoinitiation regime in pentaerythritol tetranitrate. J. Phys. Chem. C. 115 (14):6893–901. doi:10.1021/jp1089195.
  • Aluker, E. D., A. G. Krechetov, A. Y. Mitrofanov, A. S. Zverev, and M. M. Kuklja. 2012. Understanding limits of the thermal mechanism of laser initiation of energetic Materials. J. Phys. Chem. C. 116 (46):24482–86. doi:10.1021/jp308633y.
  • Baschung, B., D. Grune, and H. H. Licht. 2002. Combustion of energetic materials, 219–25. New York, NY, USA: Begell-House Inc.
  • Beckstead, M. W. 2005. Correlating aluminum burning times. Combust. Explos. Shock Waves. Shock Waves. 41 (5):533–46. doi:10.1007/s10573-005-0067-2.
  • Bockmon, B. S., M. L. Pantoya, S. F. Son, B. W. Asay, and J. T. Mang. 2005. Combustion velocities and propagation mechanisms of metastable interstitial composites. J. Appl. Phys. 98 (6):064903. doi:10.1063/1.2058175.
  • Fedorov, A. V., and Y. V. Kharlamova. 2003. Combust. Explos. Shock Waves.. Shock Waves 39,5:544–47. doi:10.1023/a:1026109801863.
  • Friedman, R., and A. Maček. 1962. Ignition and combustion of aluminium particles in hot ambient gases. Combust. Flame. 6:9–19. doi:10.1016/0010-2180(62)90062-7.
  • Friedman, R., and A. Maček 1963. Combustion studies of single aluminum particles. Symposium (International) on Combust, 9(1):703–12. doi:10.1016/s0082-0784(63)80078-8
  • Huang, Y., G. A. Risha, V. Yang, and R. A. Yetter. 2009. Effect of particle size on combustion of aluminum particle dust in air. Combust. Flame. 156 (1):5–13. doi:10.1016/j.combustflame.2008.07.018.
  • Koch, W., and S. K. Friedlander. 1989. The effect of particle coalescence on the surface area of a coagulating aerosol. J. Aerosol. Sci. 20 (8):891–94. doi:10.1016/0021-8502(89)90719-2.
  • Kuklja, M. M., B. P. Aduev, E. D. Aluker, V. I. Krasheninin, A. G. Krechetov, and A. Y. Mitrofanov. 2001. Role of electronic excitations in explosive decomposition of solids. J. Appl. Phys. 89 (7):4156–66. doi:10.1063/1.1350631.
  • Kunz, A. B., M. M. Kuklja, T. R. Botcher, and T. P. Russell. 2002. Initiation of chemistry in molecular solids by processes involving electronic excited states. Thermochim Acta 384 (1–2):279–84. doi:10.1016/s0040-6031(01)00804-8.
  • Levitas, V. I., B. W. Asay, S. F. Son, and M. Pantoya. 2006. Melt dispersion mechanism for fast reaction of nanothermites. Appl. Phys. Lett. 89 (7):071909. doi:10.1063/1.2335362.
  • Levitas, V. I., M. L. Pantoya, and B. Dikici. 2008. Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: Critical experiments and controlling parameters. Appl. Phys. Lett. 92 (1):011921. doi:10.1063/1.2824392.
  • Li, S., X. Huang, and D. Zhou. 2017. Experiments and numerical calculations on laser-induced ignition of single micron-sized aluminum fuel particle. Propellants Explos. Pyrotech. 42:523–31. doi:10.1002/prep.201600215.
  • Ohkura, Y., P. M. Rao, and X. Zheng. 2011. Flash ignition of Al nanoparticles: Mechanism and applications. Combust. Flame. 158 (12):2544–48. doi:10.1016/j.combustflame.2011.05.012.
  • Östmark, H., M. Carlson, and K. Ekvall. 1994. Laser ignition of explosives: Effects of laser wavelength on the threshold ignition energy. J. Energetic Mater. 12 (1–2):63–83. doi:10.1080/07370659408019339.
  • Puri, P., and V. Yang. 2007. Effect of particle size on melting of aluminum at nano scales. J. Phys. Chem. C 111 (32):11776–83. doi:10.1021/jp0724774.
  • Rai, A., K. Park, L. Zhou, and M. R. Zachariah. 2006. Understanding the mechanism of aluminium nanoparticle oxidation. Combust. Theory Model. 10 (5):843–59. doi:10.1080/13647830600800686.
  • Rajh, T., O. I. Micic, and A. J. Nozik. 1993. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J. Phys. Chem. 97 (46):11999–2003. doi:10.1021/j100148a026.
  • Sheng, D., Y. Zhu, L. Chen, B. Yang, and Y. Wang. 2008. Interactional mechanism between laser and energetic compound. Chin. J. Energetic Mater. 16 (5):481–86.
  • Sun, J., and S. L. Simon. 2007. The melting behavior of aluminum nanoparticles. Thermochim Acta 463 (1–2):32–40. doi:10.1016/j.tca.2007.07.007.
  • Sundaram, D. S., V. Yang, and V. E. Zarko. 2015. Combustion of nano aluminum particles (Review). Combust. Explos. Shock Waves. 51 (2):173–96. doi:10.1134/s0010508215020045.
  • Wang, S., Y. Yang, H. Yu, and D. Dlott. 2005. Dynamical effects of the oxide layer in aluminum nanoenergetic materials. Propellants, Explos. Pyrotech. 30 (2):148–55. doi:10.1002/prep.200400097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.