540
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Numerical Investigation of High Pressure CO2-Diluted Combustion Using a Flamelet-based Approach

, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 2028-2049 | Received 31 Jan 2020, Accepted 12 Aug 2020, Published online: 07 Sep 2020

References

  • Allam, R., J. Fetvedt, B. Forrest, and D. Freed. The oxy-fuel, supercritical CO2 Allam cycle: New cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions. In ASME turbo expo 2014: turbine technical conference and exposition. American Society of Mechanical Engineers Digital Collection, Düsseldorf, Germany, 2014.
  • Attili, A., F. Bisetti, M. E. Mueller, and H. Pitsch. 2016. Effects of non-unity lewis number of gas-phase species in turbulent nonpremixed sooting flames. Combust. Flame 166:192–202. doi:10.1016/j.combustflame.2016.01.018.
  • Banuti, D. T., V. Hannemann, K. Hannemann, and B. Weigand. 2016. An efficient multi-fluid-mixing model for real gas reacting flows in liquid propellant rocket engines. Combust. Flame 168:98–112. doi:10.1016/j.combustflame.2016.03.029.
  • Barak, S., O. Pryor, E. Ninnemann, S. Neupane, S. Vasu, X. Lu, and B. Forrest. 2020. Ignition delay times of oxy-syngas and oxy-methane in supercritical CO2 mixtures for direct-fired cycles. J. Eng. Gas Turbines Power 142 (2).
  • Bilger, R., S. Stårner, and R. Kee. 1990. On reduced mechanisms for methane-air combustion in nonpremixed flames. Combust. Flame 80 (2):135–49. doi:10.1016/0010-2180(90)90122-8.
  • Christo, F. C., and B. B. Dally. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame 142 (1–2):117–29. doi:10.1016/j.combustflame.2005.03.002.
  • Ciottoli, P. P., B. J. Lee, P. E. Lapenna, R. Malpica Galassi, F. E. Hernández-Pérez, E. Martelli, M. Valorani, and H. G. Im. 2019. Large eddy simulation on the effects of pressure on syngas/air turbulent nonpremixed jet flames. Combust. Sci. Technol. 1–34. doi:10.1080/00102202.2019.1632300.
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2015. Opensmoke++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comput. Phys. Commun. 192:237–64. doi:10.1016/j.cpc.2015.02.014.
  • Dally, B. B., A. Karpetis, and R. Barlow. 2002. Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst. 29 (1):1147–54. doi:10.1016/S1540-7489(02)80145-6.
  • Delimont, J., N. Andrews, and L. Chordia. Computational modeling of a 1mw scale combustor for a direct fired sco2 power cycle. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection, Oslo, Norway, 2018.
  • Ferziger, J. H., and M. Peric. 2012. Computational methods for fluid dynamics. Springer Science & Business Media.
  • Hasse, C., and N. Peters. 2005. A two mixture fraction flamelet model applied to split injections in a di diesel engine. Proc. Combust. Inst. 30 (2):2755–62. doi:10.1016/j.proci.2004.08.166.
  • Ihme, M., and Y. C. See. 2011. LES flamelet modeling of a three-stream mild combustor: Analysis of flame sensitivity to scalar inflow conditions. Proc. Combust. Inst. 33 (1):1309–17. doi:10.1016/j.proci.2010.05.019.
  • Indelicato, G., P. Lapenna, D. Durigon, and F. Creta. Simulations of turbulent combustion and wall heat transfer in single and multi injectors GCH4/GOx rocket combustors. In 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 2019.
  • Kim, S.-K., H.-S. Choi, and Y. Kim. 2012. Thermodynamic modeling based on a generalized cubic equation of state for kerosene/lox rocket combustion. Combust. Flame 159 (3):1351–65. doi:10.1016/j.combustflame.2011.10.008.
  • Kim, T., M. Bakar, and G. Magnotti. A canonical flame for the study of oxy-fuel combustion in supercritical CO2. The 7th International Supercritical CO2 Power Cycles Symposium, San Antonio, TX, 2020.
  • Kim, T., Y. Kim, and S.-K. Kim. 2013. Effects of pressure and inlet temperature on coaxial gaseous methane/liquid oxygen turbulent jet flame under transcritical conditions. J. Supercrit. Fluids 81:164–74. doi:10.1016/j.supflu.2013.05.011.
  • Lamouroux, J., M. Ihme, B. Fiorina, and O. Gicquel. 2014. Tabulated chemistry approach for diluted combustion regimes with internal recirculation and heat losses. Combust. Flame 161 (8):2120–36. doi:10.1016/j.combustflame.2014.01.015.
  • Lapenna, P., P. P. Ciottoli, and F. Creta. The effect of fuel composition on the non-premixed flame structure of LNG/LOx mixtures at supercritical pressure. In AIAA SciTech 54th AIAA Aerospace Sciences Meeting, San Diego, CA, volume AIAA 2016-0690, 01 2016.
  • Lapenna, P., and F. Creta. 2019. Direct numerical simulation of transcritical jets at moderate reynolds number. AIAA J. 57 (6):2254–63. doi:10.2514/1.J058360.
  • Lapenna, P., R. Lamioni, P. Ciottoli, and F. Creta. 2018a. Low-mach number simulations of transcritical flows. Number 210059.
  • Lapenna, P. E. 2018. Characterization of pseudo-boiling in a transcritical nitrogen jet. Phys. Fluids 30 (7):077106. doi:10.1063/1.5038674.
  • Lapenna, P. E., R. Amaduzzi, D. Durigon, G. Indelicato, F. Nasuti, and F. Creta. Simulation of a single-element GCH4/GOx rocket combustor using a non-adiabatic flamelet method. In 2018 Joint Propulsion Conference, Cincinnati, Ohio, page 4872, 2018b.
  • Lapenna, P. E., P. P. Ciottoli, and F. Creta. 2017. Unsteady non-premixed methane/oxygen flame structures at supercritical pressures. Combust. Sci. Technol. 189 (12):2056–82. doi:10.1080/00102202.2017.1358710.
  • Lapenna, P. E., and F. Creta. 2017. Mixing under transcritical conditions: An a-priori study using direct numerical simulation. J. Supercrit. Fluids 128:263–78. doi:10.1016/j.supflu.2017.05.005.
  • Lapenna, P. E., G. Indelicato, and F. Creta. 2019a. The effect of pressure on transcritical jets: A DNS study.
  • Lapenna, P. E., G. Indelicato, R. Lamioni, and F. Creta. 2019b. Modeling the equations of state using a flamelet approach in lre-like conditions. Acta Astronaut. 158:460–69. doi:10.1016/j.actaastro.2018.07.025.
  • Manikantachari, K., S. Martin, J. O. Bobren-Diaz, and S. Vasu. 2017. Thermal and transport properties for the simulation of direct-fired sCO2 combustor. J. Eng. Gas Turbines Power 139 (12).
  • Manikantachari, K., S. Martin, R. K. Rahman, C. Velez, and S. Vasu. 2019. A general study of counterflow diffusion flames for supercritical CO2 combustion. J. Eng. Gas Turbines Power 141 (12).
  • Manikantachari, K., L. Vesely, S. Martin, J. O. Bobren-Diaz, and S. Vasu. 2018. Reduced chemical kinetic mechanisms for oxy/methane supercritical CO2 combustor simulations. J. Energy Resour. Technol. 140 (9).
  • Muller, H., M. Pfitzner, P. Lapenna, P. P. Ciottoli, F. Creta, and M. Valorani. 2017. Analysis of the flame structure in non-premixed methane/oxygen flames at high-pressure conditions. In 8th European combustion meeting, 4.
  • Park, T. S., and S.-K. Kim. 2015. A pressure-based algorithm for gaseous hydrogen/liquid oxygen jet flame at supercritical pressure. Numer. Heat Transfer Part A 67 (5):547–70. doi:10.1080/10407782.2014.937267.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10 (3):319–39. doi:10.1016/0360-1285(84)90114-X.
  • Pierce, C. D., and P. Moin. 2001. Progress-variable approach for large-eddy simulation of turbulent combustion. USA: stanford university California.
  • Pitsch, H. 2000. Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames. Combust. Flame 123 (3):358–74. doi:10.1016/S0010-2180(00)00135-8.
  • Pitsch, H., and N. Peters. 1998. A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114 (1–2):26–40. doi:10.1016/S0010-2180(97)00278-2.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion. Philadelphia, PA: RT Edwards Inc.
  • Pope, S. 1978. An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J. 16 (3):279–81. doi:10.2514/3.7521.
  • Pope, S. 2000. Turbulent flows. 1st ed. Cambridge, UK: Cambridge University Press.
  • Pryor, O., S. Barak, J. Lopez, E. Ninnemann, B. Koroglu, L. Nash, and S. Vasu. 2017. High pressure shock tube ignition delay time measurements during oxy-methane combustion with high levels of CO2 dilution. J.l Of Energy Resour. Technol. 139 (4).
  • Shao, J., R. Choudhary, D. F. Davidson, R. K. Hanson, S. Barak, and S. Vasu. 2019. Ignition delay times of methane and hydrogen highly diluted in carbon dioxide at high pressures up to 300 atm. Proc. Combust. Inst. 37 (4):4555–62. doi:10.1016/j.proci.2018.08.002.
  • Strakey, P. A. 2019. Oxy-combustion modeling for direct-fired supercritical CO2 power cycles. J. Energy Resour. Technol. 141 (7).
  • Veynante, D., and L. Vervisch. 2002. Turbulent combustion modeling. Prog. Energy Combust. Sci. 28 (3):193–266. doi:10.1016/S0360-1285(01)00017-X.
  • Wilcox, D. C. et al. 1993. Turbulence modeling for CFD, volume 2. DCW industries La Canada, CA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.