151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical Investigation on the Effect of Spatial Fuel Distribution in the Airplane on the Fireball Characteristics Generated by an Aircraft Impact

, , , , &
Pages 1340-1355 | Received 17 Jun 2020, Accepted 13 Aug 2020, Published online: 02 Sep 2020

References

  • Bai, C. H., G. D. Gong, Q. M. Liu, Y. Chen, and G. Niu. 2011. The explosion overpressure field and flame propagation of methane/air and methane/coal dust/air mixtures. Saf. Sci. 49:1349–54. doi:https://doi.org/10.1016/j.ssci.2011.05.005.
  • Balke, C., W. Heller, R. Konersmann, and J. Ludwig. 1999. Study of the failure limits of a railway tank car filled with liquefied petroleum gas subjected to an open pool fire test. Rep. BAM Project 3215, Federal Institute for Material Research and Testing (BAM), Berlin, Germany.
  • Bernechaea, E. J., and J. A. Viger. 2013. Design optimization of hazardous substance storage facilities to minimize project risk. Saf. Sci. 51:49–62. doi:https://doi.org/10.1016/j.ssci.2012.06.007.
  • Blankenhagel, P., K. D. Wehrstedt, K. B. Mishra, and J. Steinbach. 2019. The capability of commercial CFD code to predict organic peroxide fireball characteristic. J. Hazard. Mater. 365:386–94. doi:https://doi.org/10.1016/j.jhazmat.2018.11.011.
  • Carson, P. A., and C. J. Mumford. 1993. Major hazards in the chemical industry. Part III. A retrospective view. Saf. Sci. 16:279–305. doi:https://doi.org/10.1016/0925-7535(93)90050-N.
  • CCPS. 1999. Guidelines for consequence analysis of chemical releases. New York: Wiley-AIChE.
  • Crocker, W. P., and D. H. Napier. 1988. Assessment of mathematical models for fire and explosion hazards of liquefied petroleum gases. J. Hazard. Mater. 20:109–35. doi:https://doi.org/10.1016/0304-3894(88)87009-2.
  • Deardorff, J. W. 1980. Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol. 18:495–527. doi:https://doi.org/10.1007/BF00119502.
  • Eckhoff, R. K. 2014. Boiling liquid expanding vapor explosions (BLEVEs): A brief review. J. Loss Prev. Process Ind. 32:30–43. doi:https://doi.org/10.1016/j.jlp.2014.06.008.
  • Hardee, H. C., D. O. Lee, and W. B. Benedick. 1978. Thermal hazard from LNG fireballs. Combust. Sci. Technol. 17:189–97. doi:https://doi.org/10.1080/00102207808946829.
  • Hostikka, S., A. Silde, T. Sikanen, A. Vepsa, and A. Paajanen. 2015. Experimental characterization of sprays resulting from impacts of liquid-containing projectiles. Nucl. Eng. Des. 295:388–402. doi:https://doi.org/10.1016/j.nucengdes.2015.09.008.
  • Hu, Z., and A. Trouve. 2008. Numerical simulation of explosive combustion following ignition of a fuel vapor cloud. Fire Safety Sci. 9:1055–66. doi:https://doi.org/10.3801/IAFSS.FSS.9-1055.
  • Iervolino, I., D. Accardo, A. E. Tirri, G. Pio, and E. Salzano. 2019. Quantitative risk analysis for the Amerigo Vespucci (Florence, Italy) airport including domino effects. Saf. Sci. 113:472–89. doi:https://doi.org/10.1016/j.ssci.2018.12.019.
  • Jepsen, R., K. Jensen, and T. O. Hern. 2004. Water dispersion modeling and diagnostics for water slug impact test. SEM X International Congress, 1–8. California: Costa Mesa.
  • Luther, W., and W. C. Muller. 2009. FDS simulation of the fuel fireball from a hypothetical commercial airliner crash on a generic power plant. Nucl. Eng. Des. 239:2056–69. doi:https://doi.org/10.1016/j.nucengdes.2009.04.018.
  • Makhviladze, G. M., J. P. Roberts, and S. Yakush. 2000. Modeling and scaling of fireballs from single- and two- phase hydrocarbon release. Fire Safety Sci. 6:1125–36. doi:https://doi.org/10.3801/IAFSS.FSS.6-1125.
  • Makhviladze, G. M., J. P. Roberts, and S. E. Yakush. 1997. Modeling the fireballs from methane release. Fire Safety Sci. 5:213–24. doi:https://doi.org/10.3801/IAFSS.FSS.5-213.
  • Makhviladze, G. M., J. P. Roberts, and S. E. Yakush. 1998. Numerical modeling of fireballs from vertical release of fuel gases. Combust. Sci. Technol. 132:199–223. doi:https://doi.org/10.1080/00102209808952015.
  • Makhviladze, G. M., Roberts, J. P., Yakush, S. E., 1999. Combustion of two-phase hydrocarbon fuel clouds released into the atmosphere. Combust. Flame, 118, 583–605.
  • McGrattan, K., B. Klein, S. Hostikka, and J. Floyd. 2008. Fire dynamics simulator (version 5), user’s guide, Vol. 1019. NIST Special Publication, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
  • McGrattan, K., R. McDermott, C. G. Weinschenk, and G. P. Forney. 2018b. Fire dynamics simulator, user’s guide. 6th ed. National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
  • McGrattan, K., S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overholt. 2013. Fire dynamics simulator, technical reference guide, volume 3: Validation. Sixth ed. Espoo, Finland: National Institute of Standards and Technology, Gaithersburg, Maryland, USA, and VTT Technical Research Centre of Finland.
  • McGrattan, K., S. Hostikka, R. McDermott, J. Floyd, G. Weinschenk, and K. Overholt. 2018a. Fire dynamics simulator, technical reference guide, Volume 1: Mathematical model. Sixth ed. National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
  • Mlakar, P. F., D. O. Dusenberry, J. R. Harris, G. Haynes, L. T. Phan, and M. A. Sozen. 2003. The pentagon building performance report. Reston, VA: ASCE.
  • Muto, K., T. Sugano, H. Tsubota, Y. Kasai, N. Koshika, M. Suzuki, S. Ohrui, W. A. von Riesemann, D. C. Bickel, and R. L. Parrish. 1989. Full-scale aircraft impact test for evaluation of impact forces, Part 2: Analysis of results. In International conference on structural mechanics in reactor technology, Vol. 10. Anaheim, CA.
  • NTSB. 2015. Steep climb and uncontrolled descent during Takeoff National Air Cargo, Inc., dba National Airlines Boeing 747 400 BCF, N949CA Bagram, Afghanistan April 29, 2013, Washington, DC.
  • Rajendram, A., F. Khan, and V. Garaniya. 2015. Modelling of fire risks in offshore facility. Fire Saf. J. 71:79–85. doi:https://doi.org/10.1016/j.firesaf.2014.11.019.
  • Sellami, I., B. Manescau, K. Chetehouna, C. de Izarra, R. Nait-Said, and F. Zidani. 2018. BLEVE fireball modeling using fire dynamics simulator (FDS) in an Algerian gas industry. J. Loss Prevent. Process Ind. 54:69–84. doi:https://doi.org/10.1016/j.jlp.2018.02.010.
  • Shelke, A. V., B. Gera, N. K. Maheshwari, and R. K. Singh. 2018. Theoretical studies on fuel dispersion and fireball formation associated with aircraft crash. Combust. Sci. Technol. 190:2134–63. doi:https://doi.org/10.1080/00102202.2018.1494164.
  • Shelke, A. V., B. Gera, N. K. Maheshwari, and R. K. Singh. 2019a. CFD simulation of fuel dispersion and fireball formation associated with aircraft crash on NPP structures. Combust. Sci. Technol. doi:https://doi.org/10.1080/00102202.2019.1612383.
  • Shelke, A. V., B. Gera, N. K. Maheshwari, and R. K. Singh. 2019b. Parametric studies on hydrocarbon fireball using large eddy simulations. Combust. Theor. Model. 23:387–417. doi:https://doi.org/10.1080/13647830.2018.1536806.
  • Shelke, A. V., N. K. Maheshwari, B. Gera, and R. K. Singh. 2017. CFD analysis of hydrocarbon fireballs. Combust. Sci. Technol. 189:1440–66. doi:https://doi.org/10.1080/00102202.2017.1296433.
  • Sikanen, T., and S. Hostikka. 2017. Numerical simulations of liquid spreading and fires following an aircraft impact. Nucl. Eng. Des. 318:147–62. doi:https://doi.org/10.1016/j.nucengdes.2017.04.012.
  • Slide, A., S. Hostikka, and A. Kankkunen. 2011. Experimental and numerical studies of liquid dispersal from a soft projectile impacting a wall. Nucl. Eng. Des. 241:617–24. doi:https://doi.org/10.1016/j.nucengdes.2010.07.033.
  • Sugano, T., H. Tsubota, Y. Kasai, N. Koshika, H. Ohnuma, W. A. von Riesemann, D. C. Bickel, and M. B. Parks. 1993. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Part 2: Evaluation of test results. Nucl. Eng. Des. 140:407–23. doi:https://doi.org/10.1016/0029-5493(93)90121-O.
  • Sunder, S. S., R. G. Gann, W. L. Grosshandler, H. S. Lew, R. W. Bukowski, F. Sadek, F. W. Gayle, J. L. Gross, T. P. McAllister, J. D. Averill, et al., 2005. Final report on the collapse of the World Trade Center Tower, National Institute of Standards and Technology.
  • TNO. 1989. Methods for the calculation of the physical effects or the escape of dangerous material. Rijswijk, Netherlands: TNO.
  • Von Riesemann, W. A., R. L. Parrish, D. C. Bickel, S. R. Heffelfiner, K. Muto, T. Sugano, H. Tsubota, N. Koshika, M. Suzuki, and S. Ohrui. 1989. Full-scale aircraft impact test for evaluation of impact forces: Part 1, Test plan, test method, and test results. In: Transactions of the 10th International conference on structural mechanics in reactor technology. Anaheim, CA, USA: 285–292.
  • Wang, K., Y. R. He, Z. Y. Liu, and X. M. Qian. 2019. Experimental study on optimization models for evaluation of fireball characteristics and thermal hazards induced by LNG vapor cloud explosions based on colorimetric thermometry. J. Hazard. Mater. 366:282–92. doi:https://doi.org/10.1016/j.jhazmat.2018.10.087.
  • Wang, Z. L., X. H. Pan, Y. M. Jiang, Q. Wang, Y. Li, J. Xiao, T. Jordan, J. Jiang. 2020. Experimental study on shock wave propagation and spontaneous ignition induced by high-pressure hydrogen suddenly released into T-shaped tubes. Saf. Sci. 127:104694. doi:https://doi.org/10.1016/j.ssci.2020.104694.
  • Yakush, S. E., and G. M. Makhviladze. 2005. Large eddy simulation of hydrocarbon fireballs institute for problems in mechanics. In Dias, V. (Editor), Proceedings of the European combustion meeting, Combustion Institute, Belgian Section: Louvain-la-Neuve, Belgium, 1–6. CST_Numerical_investigation_on_the_fireball_aircraft impact-1b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.