388
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effects of Isothermal Wall Boundary Conditions on Rotating Detonation Engine

, , &
Pages 211-224 | Received 29 Oct 2019, Accepted 03 Nov 2020, Published online: 08 Dec 2020

References

  • Anand, V., A. St. George, R. Driscoll, and E. Gutmark. 2015. Characterization of instabilities in a rotating detonation combustor. Int. J. Hydrogen. Energy 40:16649–59. doi:10.1016/j.ijhydene.2015.09.046.
  • Bykovskii, F. A., and E. F. Vedernikov. 2003. Continuous detonation of a subsonic flow of a propellant. Combust. Explos. Shock Waves 39:323–34. doi:10.1023/A:1023800521344.
  • Bykovskii, F. A., and E. F. Vedernikov. 2009. Heat fluxes to combustor walls during continuous spin detonation of fuel-air mixtures. Combust. Explos. Shock Waves 45:70–77. doi:10.1007/s10573-009-0010-z.
  • Fujii, J., Y. Kumazawa, A. Matsuo, S. Nakagami, K. Matsuoka, and J. Kasahara. 2017. Numerical investigation on detonation velocity in rotating detonation engine chamber. Proc. Combust. Inst. 36:2665–72. doi:10.1016/j.proci.2016.06.155.
  • Gamezo, V. N., D. Desbordes, and E. S. Oran. 1999. Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves 9:11–17. doi:10.1007/s001930050134.
  • Han, W., Y. Gao, and C. K. Law. 2017. Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: An integrated mechanistic study. Combust. Flame 176:285–98. doi:10.1016/j.combustflame.2016.10.010.
  • Kailasanath, K. 2017. Recent developments in the research on rotating-detonation-wave engines. 55th AIAA Aerospace Sciences Meeting. Presented at the 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas. doi:10.2514/6.2017-0784.
  • Kindracki, J., P. Wolański, and Z. Gut. 2011. Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves 21:75–84. doi:10.1007/s00193-011-0298-y.
  • Kunz, R. F., D. A. Boger, D. R. Stinebring, S. Chyczewski, J. W. Lindau, H. J. Gibeling, S. Venkateswaran, and T. R. Govindan. 2000. A preconditioned Navier stokes method for two-phase flows with application to cavitation prediction. Comput. Fluids 29:849–75. doi:10.1016/S0045-7930(99)00039-0.
  • Lee, S., D.-R. Cho, and J.-Y. Choi, 2008. Effect of curvature on the detonation wave propagation characteristics in annular channels. 46th AIAA Aerospace Sciences Meeting and Exhibit. Presented at the 46th AIAA Aerospace Sciences Meeting and Exhibit, Nevada. doi:10.2514/6.2008-988.
  • Liu, S.-J., Z.-Y. Lin, W.-D. Liu, W. Lin, and F.-C. Zhuang. 2012. Experimental realization of H2/air continuous rotating detonation in a cylindrical combustor. Combust. Sci. Technol. 184:1302–17. doi:10.1080/00102202.2012.682669.
  • Lu, F. K., and E. M. Braun. 2014. Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts. J. Propuls. Power 30:1125–42. doi:10.2514/1.B34802.
  • Ma, F., J.-Y. Choi, and V. Yang. 2006. Propulsive performance of airbreathing pulse detonation engines. J. Propuls. Power 22:1188–203. doi:10.2514/1.21755.
  • Ma, Z., S. Zhang, M. Luan, S. Yao, Z. Xia, and J. Wang. 2018. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine. Int. J. Hydrogen. Energy 43:18521–29. doi:10.1016/j.ijhydene.2018.08.064.
  • Machida, T., M. Asahara, A. K. Hayashi, and N. Tsuboi. 2014. Three-dimensional simulation of deflagration-to-detonation transition with a detailed chemical reaction model. Combust. Sci. Technol. 186:1758–73. doi:10.1080/00102202.2014.935647.
  • Meyer, S. J., M. D. Polanka, F. R. Schauer, and J. L. Hoke, 2018. Parameter impact on heat flux in a rotating detonation engine. 2018 AIAA aerospace sciences meeting. Presented at the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida. doi:10.2514/6.2018-0400.
  • Oran, E. S., J. W. Weber, E. I. Stefaniw, M. H. Lefebvre, and J. D. Anderson. 1998. A numerical study of a two-dimensional H 2-O 2-Ar detonation using a detailed chemical reaction model. Combust. Flame 113:147–63. doi:10.1016/S0010-2180(97)00218-6.
  • Peng, L., D. Wang, X. Wu, H. Ma, and C. Yang. 2015. Ignition experiment with automotive spark on rotating detonation engine. Int. J. Hydrogen. Energy 40:8465–74. doi:10.1016/j.ijhydene.2015.04.126.
  • Roy, A., P. Strakey, T. Sidwell, and D. H. Ferguson, 2015. Unsteady heat transfer analysis to predict combustor wall temperature in rotating detonation engine. 51st AIAA/SAE/ASEE Joint Propulsion Conference. Presented at the 51st AIAA/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, Orlando, FL. doi:10.2514/6.2015-4191.
  • Shao, Y.-T., M. Liu, and J.-P. Wang. 2010. Numerical investigation of rotating detonation engine propulsive performance. Combust. Sci. Technol. 182:1586–97. doi:10.1080/00102202.2010.497316.
  • Shao, Y.-T., and J.-P. Wang. 2010. Change in continuous detonation wave propagation mode from rotating detonation to standing detonation. Chin. Phys. Lett. 27:034705. doi:10.1088/0256-307X/27/3/034705.
  • Theuerkauf, S. W., 2013. Heat exchanger design and testing for a 6-inch rotating detonation engine. MS Thesis, Graduate School of Engineering and Management, Air Force Institute of Technology (AU). Wright-Patterson AFB OH. AFIT-ENY-13-M–33.
  • Tsuboi, N., and A. Koichi Hayashi. 2007. Numerical study on spinning detonations. Proc. Combust. Inst. 31:2389–96. doi:10.1016/j.proci.2006.07.262.
  • Voitsekhovskii, B. 1960. Stationary detonation. Sov. J. Appl. Mech. Tech. Phys. 3:157–64.
  • Wang, C., W. Liu, S. Liu, L. Jiang, and Z. Lin. 2015. Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor. Exp. Therm. Fluid Sci. 66:269–78. doi:10.1016/j.expthermflusci.2015.02.024.
  • Wang, Y., J. Wang, and W. Qiao. 2016. Effects of thermal wall conditions on rotating detonation. Comput. Fluids 140:59–71. doi:10.1016/j.compfluid.2016.09.008.
  • Wolański, P. 2013. Detonative propulsion. Proc. Combust. Inst. 34:125–58. doi:10.1016/j.proci.2012.10.005.
  • Yao, S., M. Liu, and J. Wang. 2015. Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine. Combust. Sci. Technol. 187:1867–78. doi:10.1080/00102202.2015.1067202.
  • Zhang, L.-F. 2019. Three-dimensional numerical study on rotating detonation engines using reactive Navier-Stokes equations. Aerosp. Sci. Technol. 93:105271. doi:10.1016/j.ast.2019.07.004.
  • Zhdan, S. A., F. A. Bykovskii, and E. F. Vedernikov. 2007. Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture. Combust. Explos. Shock Waves 43:449–59. doi:10.1007/s10573-007-0061-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.