328
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Flame Characteristics Adjacent to a Stationary Line Fire

, &
Pages 2212-2232 | Received 17 Aug 2020, Accepted 10 Dec 2020, Published online: 29 Dec 2020

References

  • Albini, F. 1982. Response of free-burning fires to nonsteady wind. Combust. Sci. Technol. 29:225–41.
  • Albini, F. A. 1981. A model for the wind-blown flame from a line fire. Combust. Flame 43:155–74.
  • Anderson, H. E., and R. Rothermel Influence of moisture and wind upon the characteristics of free-burning fires. Symposium (International) on Combustion, Cambridge, England, 1965. 1009–19.
  • Anderson, W. R., E. Catchpole, and B. Butler. 2010. Convective heat transfer in fire spread through fine fuel beds. Int. J. Wildland Fire 19:284–98.
  • Anderson, W. R., M. G. Cruz, P. M. Fernandes, L. McCaw, J. A. Vega, R. A. Bradstock, L. Fogerty, J. Gould, G. McCarthy, and J. B. Marsden-Smedly. 2015. A generic, empirical-based model for predicting rate of fire spread in shrublands. Int. J. Wildland Fire 24:443–60.
  • Baines, P. G. 1990. Physical mechanisms for the propagation of surface fires. Math. Comput. Model. 13:83–94.
  • Butler, B., W. Anderson, and E. Catchpole. 2007. Influence of slope on fire spread rate. In The fire environment–innovations, management, and policy, B. W. Butler and W. COOK ed.
  • Byram, G. 1959. Combustion of Forest Fuels. In Forest fire, control and use, ed. K. P. DAVIS. New York: McGraw-Hill.
  • Cheney, N., and J. Gould. 1995. Fire growth in grassland fuels. Int. J. Wildland Fire 5:237–47.
  • Consalvi, J. L., Y. Pizzo, B. Porterie, and J. L. Torero. 2007. On the flame height definition for upward flame spread. Fire Saf. J. 42:384–92.
  • Cox, G., and R. Chitty. 1985. Some source-dependent effects of unbounded fires. Combust. Flame 60:219–32.
  • Cox, G., R. Chitty, and S. KUMAR. 1989. Fire modelling and the King’s Cross fire investigation. Fire Saf. J. 15:103–06.
  • Drysdale, D., and A. MacMillan. 1992. Flame spread on inclined surfaces. Fire Saf. J. 18:245–54.
  • Dupuy, J., J. Marechal, and D. Morvan. 2003. Fires from a cylindrical forest fuel burner: Combustion dynamics and flame properties. Combust. Flame 135:65–76.
  • Dupuy, J.-L., and J. Marechal. 2011. Slope effect on laboratory fire spread: Contribution of radiation and convection to fuel bed preheating. Int. J. Wildland Fire 20:289–307.
  • Fang, J., and F. Steward. 1969. Flame spread through randomly packed fuel particles. Combust. Flame 13:392–98.
  • Finney, M. A., J. Forthofer, I. C. Grenfell, B. A. Adam, N. K. Akafuah, and K. Saito A study of flame spread in engineered cardboard fuelbeds: Part I: Correlations and observations. In: Seventh International Symposium on Scale Modeling (ISSM-7); Hirosaki, Japan; 6–9 August, 2013. International Scale Modeling Committee. 10 p., 2013b.
  • Finney, M. A., J. D. Cohen, J. M. Forthofer, S. S. McAllister, M. J. Gollner, D. J. Gorham, K. Saito, N. K. Akafuah, B. A. Adam, and J. D. English. 2015. Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. 112:9833–38.
  • Finney, M. A., J. D. Cohen, S. S. McAllister, and W. M. Jolly. 2013a. On the need for a theory of wildland fire spread. Int. J. Wildland Fire 22:25–36.
  • Frankman, D., B. W. Webb, B. W. Butler, D. Jimenez, J. M. Forthofer, P. Sopko, K. S. Shannon, J. K. Hiers, and R. D. Ottmar. 2013. Measurements of convective and radiative heating in wildland fires. Int. J. Wildland Fire 22:157–67.
  • Gengembre, E., P. Cambray, D. Karmed, and J. Bellet. 1984. Turbulent diffusion flames with large buoyancy effects. Combust. Sci. Technol. 41:55–67.
  • Heskestad, G. 1984. Engineering relations for fire plumes. Fire Saf. J. 7:25–32.
  • Hirano, T., S. E. Noreikis, and T. E. Waterman. 1974. Postulations of flame spread mechanisms. Combust. Flame 22:353–63.
  • Hu, L. 2017. A review of physics and correlations of pool fire behaviour in wind and future challenges. Fire Saf. J. 91:41–55.
  • Lam, C. S., and E. J. Weckman. 2015a. Wind-blown pool fire, Part I: Experimental characterization of the thermal field. Fire Saf. J. 75:1–13.
  • Lam, C. S., and E. J. Weckman. 2015b. Wind-blown pool fire, Part II: Comparison of measured flame geometry with semi-empirical correlations. Fire Saf. J. 78:130–41.
  • Linn, R. R., and P. Cunningham. 2005. Numerical simulations of grass fires using a coupled atmosphere–fire model: Basic fire behavior and dependence on wind speed. J. Geophys. Res. 110:1–19.
  • Maynard, T. B., and J. W. Butta. 2018. A physical model for flame height intermittency. Fire Technol. 54:135–61.
  • McCaffrey, B. J. 1979. Purely buoyant diffusion flames: Some experimental results. U. S. Washington, DC: Department of Commerce, National Bureau of Standards.
  • Mell, W., M. A. Jenkins, J. Gould, and P. Cheney. 2007. A physics-based approach to modelling grassland fires. Int. J. Wildland Fire 16:1–22.
  • Morandini, F., A. Simeoni, P. A. Santoni, and J. H. Balbi. 2005. A model for the spread of fire across a fuel bed incorporating the effects of wind and slope. Combust. Sci. Technol. 177:1381–418.
  • Morandini, F., P. Santoni, and J.Balbi. 2001. The contribution of radiant heat transfer to laboratory-scale fire spread under the influences of wind and slope. Fire Saf. J. 36:519–43.
  • Mueller, E. V., N. Skowronski, J. C. Thomas, K. Clark, M. R. Gallagher, R. Hadden, W. Mell, and A. Simenoni. 2018. Local measurements of wildland fire dynamics in a field-scale experiment. Combust. Flame 194:452–63.
  • Nelson, J. R. 2002. An effective wind speed for models of fire spread. Int. J. Wildland Fire 11:153–61.
  • Nelson, R. M., B. W. Butler, and D. R. Weise. 2012. Entrainment regimes and flame characteristics of wildland fires. Int. J. Wildland Fire 21 (2):pp.127–140.
  • Nelson, R. M., Jr, and C. W. Adkins. 1986. Flame characteristics of wind-driven surface fires. Can. J. For. Res. 16 (6):pp.1293–1300.
  • Quintiere, J. 1989. Scaling applications in fire research. Fire Saf. J. 15:3–29.
  • Quintiere, J., and B. Grove A unified analysis for fire plumes Symposium (International) on Combustion, 1998. Elsevier, 2757–66.
  • Quintiere, J., M. Harkleroad, and Y. Hasemi. 1986. Wall flames and implications for upward flame spread. Combust. Sci. Technol. 48:191–222.
  • Rothermel, R. C. 1967. Airflow characteristics - wind tunnels and combustionfacilities, 32 p. Northern Forest Fire Laboratory. Ogden, UT: Intermountain Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture.
  • Rothermel, R. C. 1972. A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service Research Paper INT-115, 40p
  • Sakamoto, Y., M. Ishiguro, and G. Kitigawa. 1986. Akaike information criterion statistics. Dordrecht Neth. D. Reidel 83:902–26.
  • Smith, D. 1992. Measurements of flame length and flame angle in an inclined trench. Fire Saf. J. 18:231–44.
  • Spalding, D., H. Hottel, S. Bragg, A. Lefebre, D. Shepherd, and A. Scurlock, 1963. The art of partial modeling. Symposium (International) on Combustion. Elsevier, 833–43.
  • Sullivan, A. L. 2017. Inside the inferno: Fundamental processes of wildland fire behaviour. Curr. For. Rep. 3:150–71.
  • Tang, F., Q. He, and J. Wen. 2019. Effects of crosswind and burner aspect ratio on flame characteristics and flame base drag length of diffusion flames. Combust. Flame 200:265–75.
  • Tang, W., D. J. Gorham, M. A. Finney, S. McAllister, J. Cohen, J. Forthofer, and M. J. Gollner. 2017. An experimental study on the intermittent extension of flames in wind-driven fires. Fire Saf. J. 91:742–48.
  • Weise, D. R., 1994. A tilting wind tunnel for fire behavior studies. Res. Note PSW-RN-417. Albany, CA: Pacific Southwest Research Station, Forest Service, US Department of Agriculture. 6 p, 417.
  • Weise, D. R., and G. S. Bigning. 1996. Effects of wind velocity and slope on flame properties. Can. J. For. Res. 26:1849–58.
  • Wold, C. 2016. Air Flow Characterization of the Missoula Fire Lab. Low Speed Wind Tunnel Using a TSI IFA-300 Hot-Wire Anemometer. Unpublished report available at the Missoula Fire Sciences Laboratory.
  • Woodburn, P., and D. Drysdale. 1998. Fires in inclined trenches: The dependence of the critical angle on the trench and burner geometry. Fire Saf. J. 31:143–64.
  • Wu, Y., H. Xing, and G. Atkinson. 2000. Interaction of fire plume with inclined surface. Fire Saf. J. 35:391–403.
  • Yang, Z., and H.-X. Chen. 2018. Experimental Study on Flame Geometry along the Inclined Surface with and without Sidewalls by Using a Gas Burner. Procedia Eng. 211:925–33.
  • Yuan, L.-M., and G. Cox. 1996. An experimental study of some line fires. Fire Saf. J. 27:123–39.
  • Zhang, S., N. Liu, J. Lei, X. Xie, Y. Jiao, and R. Tu. 2018. Experimental study on flame characteristics of propane fire array. Nt. J. Therm. Sci. 129:171–80.
  • Zukoski, E., B. Cetegen, and T. Kubota Visible structure of buoyant diffusion flames. Symposium (International) on Combustion, 1985. Elsevier, USA: 361–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.