270
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Very Large Eddy Simulation of Lean Premixed Flames to Imposed Inlet Velocity Oscillations

, , ORCID Icon &
Pages 2933-2956 | Received 10 Jun 2020, Accepted 06 Mar 2021, Published online: 31 May 2021

References

  • Ahmed, S., R. Balachandran, T. Marchione, and E. Mastorakos. 2007. Spark ignition of turbulent nonpremixed bluff-body flames. Combust. Flame 151 (1–2):366–85. doi:10.1016/j.combustflame.2007.06.012.
  • Armitage, C. A., A. J. Riley, R. S. Cant, A. P. Dowling, and S. R. Stow. 2004. Flame transfer function for swirled LPP combustion from experiments and CFD. ASME Turbo. Expo GT2004–53820.
  • Balachandran, R. 2005. Experimental Investigation of the response of turbulent premixed flames to acoustic oscillations. Ph.D. Thesis, University of Cambridge, Cambridge, UK.
  • Bernier, D., S. Ducruix, F. Lacas, S. Candel, N. Robart, and T. Poinsot. 2003. Transfer function measurements in a model combustor: Application to adaptive instability control. Combust. Sci. Technol 175 (5):933–1013. doi:10.1080/00102200302407.
  • Chaouat, B. 2017. The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows. Flow Turbulen. Combust 99 (2):279–327. doi:10.1007/s10494-017-9828-8.
  • Colin, O., F. Ducros, D. Veynante, and T. Poinsot. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (7):1843–63. doi:10.1063/1.870436.
  • Cuenot, B., E. Riber, and B. Franzelli. 2014. Towards the prediction of soot in aero-engine combustors with large eddy simulation. Technical Report, Center for Turbulence Research, Proceedings of the Summer Program 2014.
  • Dowling, A. 1997. Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech 346:271–90. doi:10.1017/S0022112097006484.
  • Dowling, A. P., and S. R. Stow. 2003. Acoustic analysis of gas turbine combustors. J. Propul. Power 19 (5):751–63. doi:10.2514/2.6192.
  • Filho, F. L. S., J. Kadavelil, M. Staufer, A. Sadiki, and J. Janicka. 2019. Analysis of LES-based combustion models applied to an acetone turbulent spray flame. Combust. Sci. Tech 191 (1):54–67. doi:10.1080/00102202.2018.1452404.
  • Gicquel, L. Y. M., G. Staffelbach, and T. Poinsot. 2012. Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci 38:782–817.
  • Han, X., and S. Krajnovic. 2013. An efficient very large eddy simulation model for simulation of turbulent flow. Int. J. Numer. Methods Fluids 71 (11):1341–60. doi:10.1002/fld.3714.
  • Han, X., and S. Krajnovic. 2015. Very-large Eddy Simulation based on k-ω model. Aiaa J 53 (4):1103–08. doi:10.2514/1.J053341.
  • Han, X., J. Li, and A. S. Morgans. 2015. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model. Combust. Flame 162 (10):3632–47. doi:10.1016/j.combustflame.2015.06.020.
  • Han, X., and A. S. Morgans. 2015. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver. Combust. Flame 162 (5):1778–92. doi:10.1016/j.combustflame.2014.11.039.
  • Han, X., J. F. Yang, and J. K. Mao. 2016. LES investigation of two frequency effects on acoustically forced premixed flame. Fuel 185:449–59. doi:10.1016/j.fuel.2016.08.005.
  • Karpov, V. P., A. N. Lipatnikov, and V. L. Zimont. 1996. A test of an engineering model of premixed turbulent combustion. Proc. Combust. Inst 26 (1):249–57. doi:10.1016/S0082-0784(96)80223-2.
  • Kim, D., J. G. Lee, B. D. Quay, D. A. Santavicca, K. Kim, and S. Srinivasan. 2010. Effect of flame structure on the flame transfer function in a premixed gas turbine combustor. J. Eng. Gas Turbines Power 132 (2):021502. doi:10.1115/1.3124664.
  • Kraichnan, R. 1970. Diffusion by a random velocity field. Phys. Fluids 11:21–31.
  • Krediet, H. J., C. H. Beck, W. Krebs, S. Schimek, C. O. Paschereit, and J. B. W. Kok. 2012. Identification of the flame describing function of a premixed swirl flame from LES. Combust. Sci. Tech 184 (7–8):888–900. doi:10.1080/00102202.2012.663981.
  • Langella, I., N. A. K. Doan, N. Swaminathan, and S. B. Pope. 2018. Study of subgrid-scale velocity models for reacting and nonreacting flows. Phys. Rev. Fluids 3 (5):054602. doi:10.1103/PhysRevFluids.3.054602.
  • Langella, I., N. Swaminathan, Y. Gao, and N. Chakraborty. 2017. Large eddy simulation of premixed combustion: Sensitivity to subgrid scale velocity modelling. Combust. Sci. Tech 189 (1):43–78. doi:10.1080/00102202.2016.1193496.
  • Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. Aiaa J 32 (8):1598–605. doi:10.2514/3.12149.
  • Noiray, N., D. Durox, T. Schuller, and S. Candel. 2008. A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech 615:139–67. doi:10.1017/S0022112008003613.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion. 2nd ed. R.T. Edwards.
  • Proch, F., and A. M. Kempf. 2014. Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame 161 (10):2627–46. doi:10.1016/j.combustflame.2014.04.010.
  • Riley, A., S. Park, A. Dowling, S. Evesque, and A. Annaswamy. 2004. Advanced closed-loop control on an atmospheric gaseous lean-premixed combustor. J. Eng. Gas Turbines Power 126 (4):708–16. doi:10.1115/1.1788685.
  • Sagaut, P., S. Deck, and M. Terracol. 2013. Multiscale and multiresolution approaches in turbulence, LES, DES and hybrid RANS/LES methods: Applications and guidelines. 2nd ed. London: Imperial College Press.
  • Schimek, S., J. P. Moeck, and C. O. Paschereit. 2011. An experimental investigation of the nonlinear response of an atmospheric swirl-stabilized premixed flame. J. Eng. Gas Turbines Power 133:101502.
  • Selle, L., G. Lartigue, T. Poinsot, R. Koch, K. U. Schildmacher, W. Krebs, B. Prade, P. Kaufmann, and D. Veynante. 2004. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137 (4):489–505. doi:10.1016/j.combustflame.2004.03.008.
  • Smirnov, R., S. Shi, and I. Celik. 2001. Random flow generation technique for large Eddy Simulations and particle-dynamics modeling. ASME J. Fluids Eng 123 (2):359–71. doi:10.1115/1.1369598.
  • Spalart, P. R. 2009. Detached-Eddy Simulation. Ann. Rev. Fluid Mech 41 (1):203–29. doi:10.1146/annurev.fluid.010908.165130.
  • Staffelbach, G., L. Y. M. Gicquel, G. Boudier, and T. Poinsot. 2009. Large Eddy Simulation of self excited azimuthal modes in annular combustors. Proc. Combust. Inst 32 (2):2909–16. doi:10.1016/j.proci.2008.05.033.
  • Stow, S. R., and A. P. Dowling. 2009. A time-domain network model for nonlinear thermoacoustic oscillations. J. Eng. Gas Turbines Power 131 (3):031502. doi:10.1115/1.2981178.
  • Swaminathan, N., and K. N. C. Bray. 2014. Turbulent premixed flames. Cambridge, UK: Cambridge University Press.
  • Sweeney, M. S., S. Hochgreb, M. J. Dunn, and R. S. Barlow. 2012. The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows. Combust. Flame 159 (9):2896–911. doi:10.1016/j.combustflame.2012.06.001.
  • Tay-Wo-Chong, L., T. Komarek, R. Kaess, S. Foller, and W. Polifke. 2010. Identification of flame transfer functions from LES of a premixed swirl burner. ASME Turbo. Expo 2010:GT2010–22769.
  • Xia, Z., Z. Cheng, X. Han, and J. Mao. 2020b. VLES turbulence modelling for separated flow simulation with OpenFOAM. J. Wind Eng. Ind. Aerodyn 198:104077. doi:10.1016/j.jweia.2019.104077.
  • Xia, Z., X. Han, and J. Mao. 2020a. Assessment and validation of very-large-eddy simulation turbulence modeling for strongly swirling turbulent flow. AIAA Journal 131 (1):148–63. doi:10.2514/1.J058302.
  • Zhou, N., Y. Mei, X. Li, B. Chen, W. Huang, V. Rasouli, H. Zhao, and X. Yuan. 2020. Numerical simulation of the influence of vent conditions on hydrogen flame propagation. Combust. Sci. Tech. doi:10.1080/00102202.2020.1736576.
  • Zimont, V. L., and A. N. Lipatnikov. 1993. Calculation of the rate of heat release in a turbulent flame. Doklady Phys. Chem 332:440–43.
  • Zimont, V. L., and A. N. Lipatnikov. 1995. A numerical model of premixed turbulent combustion. Chem. Phys. Rep 14:993–1025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.