212
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulations of Ozone Addition to Strained Flames

ORCID Icon &
Pages 3225-3245 | Received 28 Sep 2020, Accepted 26 Apr 2021, Published online: 17 May 2021

References

  • Chao, B. H., F. N. Egolfopoulos, and C. K. Law. 1997. Structure and propagation of premixed flame in nozzle-generated counterflow. Combust. Flame 109 (4):620–38. doi:10.1016/S0010-2180(97)89633-2.
  • Dixon-Lewis, G. 1990. Structure of laminar flames. Proc. Combust. Inst. 23 (1):305–24. doi:10.1016/S0082-0784(06)80274-2.
  • Do, H., M. A. Cappelli, and M. G. Mungal. 2010. Plasma assisted cavity flame ignition in supersonic flows. Combust. Flame 157 (9):1783–94. doi:10.1016/j.combustflame.2010.03.009.
  • Edwards, T. 2006. Cracking and deposition behavior of supercritical hydrocarbon aviation fuels. Combust. Sci. Technol 178 (1–3):307–34. doi:10.1080/00102200500294346.
  • Egolfopoulos, F. N., N. Hansen, Y. Ju, K. Kohse-Höinghaus, C. K. Law, and F. Qi. 2014. Advances and challenges in laminar flame experiments and implications for combustion chemistry. Prog. Energy. Combust. Sci. 43:36–67.
  • Ehn, A., J. J. Zhu, P. Petersson, Z. S. Li, M. Aldén, C. Fureby, T. Hurtig, N. Zettervall, A. Larsson, and J. Larfeldt. 2015. Plasma assisted combustion: effects of o3 on large scale turbulent combustion studied with laser diagnostics and large eddy simulations. Proc. Combust. Inst. 35 (3):3487–95. doi:10.1016/j.proci.2014.05.092.
  • Filimonova, E., A. Bocharov, and V. Bityurin. 2018. Influence of a non-equilibrium discharge impact on the low temperature combustion stage in the HCCI engine. Fuel 228:309–22. doi:10.1016/j.fuel.2018.04.124.
  • Firsov, A., K. V. Savelkin, D. A. Yarantsev, and S. B. Leonov. 2015. Plasma-enhanced mixing and flameholding in supersonic flow. Phil. Trans. R. Soc. A 373 (2048):20140337. doi:10.1098/rsta.2014.0337.
  • Foucher, F., P. Higelin, C. Mounaïm-Rousselle, and P. Dagaut. 2013. Influence of ozone on the combustion of n-heptane in a HCCI engine. Proc. Combust. Inst. 34 (2):3005–12. doi:10.1016/j.proci.2012.05.042.
  • Gao, X., B. Wu, W. Sun, T. Ombrello, and C. Carter. 2019. Ozonolysis activated autoignition in non-premixed coflow. J. Phys. D: Appl. Phys 52 (10):105201. doi:10.1088/1361-6463/aaf785.
  • Gao, X., Y. Zhang, S. Adusumilli, J. Seitzman, W. Sun, T. Ombrello, and C. Carter. 2015. The effect of ozone addition on laminar flame speed,”. Combust. Flame 162 (10):3914–24. doi:10.1016/j.combustflame.2015.07.028.
  • Goodwin, D. G., R. L. Speth, H. K. Moffat, and B. W. Weber 2018. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, version. 2.4.0. Accessed May 4, 2021. Available at: https://www.cantera.org
  • Huang, H., L. Spadaccini, and D. Sobel 2002. Endothermic heat-sink of jet fuels for scramjet cooling. AIAA paper 2002-3871. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, IN, July 7-10.
  • Hui, X., and C. J. Sung. 2013. Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures. Fuel 109:191–200. doi:10.1016/j.fuel.2012.12.084.
  • Jacobsen, L. S., C. D. Carter, T. A. Jackson, S. Williams, J. Barnett, D. Bivolaru, S. Kuo, C. J. Tam, and R. A. Baurle. 2008. Plasma-assisted ignition in scramjets. J. Propul. Power 24 (4):641–54. doi:10.2514/1.27358.
  • Ji, C., E. Dames, Y. L. Wang, H. Wang, and F. N. Egolfopoulos. 2010. Propagation and extinction of premixed C5–C12 n-alkane flames. Combust. Flame 157 (2):277–87. doi:10.1016/j.combustflame.2009.06.011.
  • Ju, Y., H. Guo, K. Maruta, and F. Liu. 1997. On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames. J. Fluid Mech. 342:315–34. doi:10.1017/S0022112097005636.
  • Ju, Y., and W. Sun. 2015. Plasma assisted combustion: dynamics and chemistry. Prog. Energy Combust. Sci. 48 (2015):21–83.
  • Ju, Y., and Y. Xue. 2005. Extinction and flame bifurcations of stretched dimethyl ether premixed flames. Proc. Combust. Inst. 30 (1):295–301. doi:10.1016/j.proci.2004.08.258.
  • Kim, W., and J. Cohen. 2021. Plasma-assisted combustor dynamics control at realistic gas turbine conditions. Combust. Sci. Technol 193 (5):869-88. doi:10.1080/00102202.2019.1676743.
  • Kimura, I., H. Aoki, and M. Kato. 1981. The use of a plasma jet for flame stabilization and promotion of combustion in supersonic air flows. Combust. Flame 42:297–305. doi:10.1016/0010-2180(81)90164-4.
  • Kumar, K., C. J. Sung, and X. Hui. 2011. Laminar flame speeds and extinction limits of conventional and alternative jet fuels. Fuel 90 (3):1004–11. doi:10.1016/j.fuel.2010.11.022.
  • Ma, L., Q. Lei, Y. Wu, W. Xu, T. M. Ombrello, and C. D. Carter. 2016. From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz. Combust. Flame 165:1–10. doi:10.1016/j.combustflame.2015.08.026.
  • McGann, B., C. D. Carter, T. M. Ombrello, S. Hammack, T. Lee, and H. Do. 2017. Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching. Proc. Combust. Inst. 36 (2):2857–64. doi:10.1016/j.proci.2016.06.089.
  • Nomaguchi, T., and S. Koda. 1989. Spark ignition of methane and methanol in ozonized air. Symp. (International) Combust 22 (1):1677–82. doi:10.1016/S0082-0784(89)80180-8.
  • Ombrello, T., S. H. Won, Y. Ju, and S. Williams. 2010. Flame propagation enhancement by plasma excitation of oxygen. part i: effects of O3. Combust. Flame 157 (10):1906–15. doi:10.1016/j.combustflame.2010.02.005.
  • Pellett, G., S. Vaden, and L. Wilson 2007. Opposed jet burner extinction limits: Simple mixed hydrocarbon scramjet fuels vs air. AIAA paper 2007-5664. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, July 8-11.
  • Pinchak, M., T. Ombrello, C. Carter, E. Gutmark, and V. Katta. 2015. The effects of hydrodynamic stretch on the flame propagation enhancement of ethylene by addition of ozone. Phil. Trans. R. Soc. A 373 (2048):20140339. doi:10.1098/rsta.2014.0339.
  • Pinchak, M. D., T. Ombrello, C. D. Carter, E. J. Gutmark, and V. R. Katta 2016. Effects of axial stretch on the flame propagation enhancement of large hydrocarbons by addition of ozone. AIAA Paper 2016-0193. 54th AIAA Aerospace Sciences Meeting, San Diego, CA, January 4-8.
  • Puri, P., F. Ma, J. Y. Choi, and V. Yang. 2005. Ignition characteristics of cracked JP-7 fuel. Combust. Flame 142 (4):454–57. doi:10.1016/j.combustflame.2005.06.001.
  • Reuter, C. B., M. Lee, S. H. Won, and Y. Ju. 2017. Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction. Combust. Flame 179:23–32. doi:10.1016/j.combustflame.2017.01.028.
  • Reuter, C. B., and T. M. Ombrello. 2020. Ozone-enhanced flame propagation of methane/ethylene/air mixtures at subatmospheric pressures. J. Propul. Power 36 (6):931–39. doi:10.2514/1.B38067.
  • Reuter, C. B., and T. M. Ombrello. 2021. Flame enhancement of ethylene/methane mixtures by ozone addition. Proc. Combust. Inst. 38(2):2397–407.doi:10.1016/j.proci.2020.06.122.
  • Rousso, A. C., N. Hansen, A. W. Jasper, and Y. Ju. 2018. Low-temperature oxidation of ethylene by ozone in a jet-stirred reactor. J. Phys. Chem. A 122 (43):8674–85. doi:10.1021/acs.jpca.8b06556.
  • Shiraishi, T., T. Urushihara, and M. Gundersen. 2009. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition. J. Phys. D: Appl. Phys 42 (13):135208. doi:10.1088/0022-3727/42/13/135208.
  • Smallbone, A. J., W. Liu, C. K. Law, X. Q. You, and H. Wang. 2009. Experimental and modeling study of laminar flame speed and non-premixed counterflow ignition of n-heptane. Proc. Combust. Inst. 32 (1):1245–52. doi:10.1016/j.proci.2008.06.213.
  • Smith, G. P., Y. Tao, and H. Wang 2016. Foundational Fuel Chemistry Model Version 1.0 (FFCM-1). Accessed May 4, 2021. Available at: http://nanoenergy.stanford.edu/ffcm1
  • Starikovskiy, A., and N. Aleksandrov. 2013. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 39 (1):61–110. doi:10.1016/j.pecs.2012.05.003.
  • Sun, C. J., C. J. Sung, L. He, and C. K. Law. 1999. Dynamics of weakly stretched flames: Quantitative description and extraction of global flame parameters. Combust. Flame 118 (1–2):108–28. doi:10.1016/S0010-2180(98)00137-0.
  • Sun, W., X. Gao, B. Wu, and T. Ombrello. 2019. The effect of ozone addition on combustion: kinetics and dynamics combustion. Prog. Energy Combust. Sci. 73:1–25. doi:10.1016/j.pecs.2019.02.002.
  • Tachibana, T., K. Hirata, H. Nishida, and H. Osada. 1991. Effect of ozone on combustion of compression ignition engines. Combust. Flame 85 (3–4):515–19. doi:10.1016/0010-2180(91)90154-4.
  • Tien, J. H., and M. Matalon. 1991. On the burning velocity of stretched flames. Combust. Flame 84 (3–4):238–48. doi:10.1016/0010-2180(91)90003-T.
  • Vu, T. M., S. H. Won, T. Ombrello, and M. S. Cha. 2014. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow. Combust. Flame 161 (4):917–26. doi:10.1016/j.combustflame.2013.09.023.
  • Wang, Y. L., A. T. Holley, C. Ji, F. N. Egolfopoulos, T. T. Tsotsis, and H. J. Curran. 2009. Propagation and extinction of premixed dimethyl-ether/air flames. Proc. Combust. Inst. 32 (1):1035–42. doi:10.1016/j.proci.2008.06.054.
  • Wang, Z. H., L. Yang, B. Li, Z. S. Li, Z. W. Sun, M. Aldén, K. F. Cen, and A. A. Konnov. 2012. Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations. Combust. Flame 159 (1):120–29. doi:10.1016/j.combustflame.2011.06.017.
  • Wolk, B., A. DeFilippo, J. Y. Chen, R. Dibble, A. Nishiyama, and Y. Ikeda. 2013. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber. Combust. Flame 160 (7):1225–34. doi:10.1016/j.combustflame.2013.02.004.
  • Won, S. H., B. Jiang, P. Diévart, C. H. Sohn, and Y. Ju. 2015. Self-sustaining n -heptane cool diffusion flames activated by ozone. Proc. Combust. Inst. 35 (1):881–88. doi:10.1016/j.proci.2014.05.021.
  • Yehia, O. R., C. B. Reuter, and Y. Ju. 2019. On the chemical characteristics and dynamics of n-alkane low-temperature multistage diffusion flames. Proc. Combust. Inst. 37 (2):1717–24. doi:10.1016/j.proci.2018.06.161.
  • Zhao, H., X. Yang, and Y. Ju. 2016. Kinetic studies of ozone assisted low temperature oxidation of dimethyl ether in a flow reactor using molecular-beam mass spectrometry. Combust. Flame 173:187–94. doi:10.1016/j.combustflame.2016.08.008.
  • Zhu, D. L., F. N. Egolfopoulos, and C. K. Law. 1988. Experimental and numerical determination of laminar flame speeds of methane/(Ar, N2, CO2)-air mixtures as function of stoichiometry, pressure, and flame temperature. Proc. Combust. Inst. 22 (1):1537–45. doi:10.1016/S0082-0784(89)80164-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.