157
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Spontaneous Combustion Risk of Coal-based Activated Carbon

ORCID Icon, , , &
Pages 47-63 | Received 03 Feb 2021, Accepted 20 May 2021, Published online: 08 Jun 2021

References

  • Abdulsalam, J., M. Onifade, S. Bada, J. Mulopo, and B. Genc. 2020b. The spontaneous combustion of chemically activated carbons from south African coal waste. Combust. Sci. Technol. doi:10.1080/00102202.2020.1854747.
  • Abdulsalam, J., M. Onifade, J. Mulopo, and S. Bada. 2020a. Self-heating characteristics of materials producing activated carbon. Int. J. Coal Prep. Util 1–7. doi:10.1080/19392699.2020.1729138.
  • Bai, Z., C. Wang, J. Deng, F. Kang, and C. Shu . 2020. Experimental investigation on using ionic liquid to control spontaneous combustion of lignite. Process. Saf. Environ. 142:138–49. doi:10.1016/j.psep.2020.06.017.
  • Bowes, P. C., and A. Cameron. 1971. Self‐heating and ignition of chemically activated carbon. J. Appl. Chem. Biotechn. 21 (9):244–50. doi:10.1002/jctb.5020210902.
  • Buettner, L. C., C. A. Leduc, and T. G. Glover. 2014. Instantaneous ignition of activated carbon. Ind. Eng. Chem. Res. 53 (41):15793–97. doi:10.1021/ie502343y.
  • Cameron, A., and J. D. Macdowall. 1972. Self-heating of commercial powdered activated carbons. J. Appl. Chem. Biotechn. 22 (9):1007–18. doi:10.1002/jctb.5020220908.
  • Chingombe, P., B. Saha, and R. J. Wakeman. 2005. Surface modification and characterisation of a coal-based activated carbon. Carbon 43 (15):3132–43. doi:10.1016/j.carbon.2005.06.021.
  • Gui, H. J., F. S. Li, Y. F. Wei, and T. Yamada. 2018. Adsorption characteristics of natural organic matter on activated carbons with different pore size distribution. Int. J. Environ. Sci. Technol. 15 (8):1619–28. doi:10.1007/s13762-017-1536-3.
  • Jayaraman, K., I. Gokalp, E. Bonifaci, and N. Merlo. 2015. Kinetics of steam and CO2 gasification of high ash coal-char produced under various heating rates. Fuel 154:370–79. doi:10.1016/j.fuel.2015.02.091.
  • Jayaraman, K., M. V. Kok, and I. Gokalp. 2020. Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach. Energy 204:117905. doi:10.1016/j.energy.2020.117905.
  • Lei, Q. Q., Q. Y. Xie, and Y. W. Ding. 2019. Fire hazard evaluation of activated carbons pyrolysis kinetic parameters analyses and model development. J. Therm. Anal. Calorim. 139 (1):441–49. doi:10.1007/s10973-019-08417-z.
  • Li, Q., Y. Xiao, K. Zhong, C. Shu, H. Lü, J. Deng, and S. Wu. 2020. Overview of commonly used materials for coal spontaneous combustion prevention. Fuel 275:117981. doi:10.1016/j.fuel.2020.117981
  • Li, Z., Y. Liu, X. Yang, Y. Xing, Z. Wang, Q. Yang, and R. T. Yang. 2015. Desorption kinetics of naphthalene and acenaphthene over two activated carbons via thermogravimetric analysis. Energy. Fuels. 29 (8):5303–10. doi:10.1021/acs.energyfuels.5b01159.
  • Liang, D. C., Q. Xie, J. C. Liu, F. Xie, D. Q. Liu, and C. R. Wan. 2020. Mechanism of the evolution of pore structure during the preparation of activated carbon from Zhundong high-alkali coal based on gas-solid diffusion and activation reactions. RSC. Adv. 10 (55):33566–75. doi:10.1039/D0RA06105K.
  • Lim, A. C. R., B. L. F. Chin, Z. A. Jawad, and K. L. Hii. 2016. Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Eng 148:1247–51. doi:10.1016/j.proeng.2016.06.486.
  • Liu, D., Z. Hao, X. Zhao, R. Su, W. Feng, S. Li, and B. Jia. 2019. Effect of physical and mechanical activation on the physicochemical structure of coal-based activated carbons for SO2 adsorption. Processes 7 (10):707. doi:10.3390/pr7100707.
  • Lladó, J., M. Solé-Sardans, C. Lao-Luque, E. Fuente, and B. Ruiz. 2016. Removal of pharmaceutical industry pollutants by coal-based activated carbons. Process. Saf. Environ. 104:294–303. doi:10.1016/j.psep.2016.09.009.
  • Onifade, M., and B. Genc. 2018. Spontaneous combustion of coals and coal-shales. Int. J. Min. Sci. Technol. 28 (6):933–40. doi:10.1016/j.ijmst.2018.05.013.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 30 (3):303–11. doi:10.1016/j.ijmst.2020.03.001.
  • Onifade, M., B. Genc, and S. Bada. 2020. Spontaneous combustion liability between coal seams: a thermogravimetric study. Int. J. Min. Sci. Technol. 30 (5):691–98. doi:10.1016/j.ijmst.2020.03.006.
  • Wang, L., F. Sun, J. Gao, X. Pi, Z. Qu, and G. Zhao. 2018. Adjusting the porosity of coal-based activated carbons based on a catalytic physical activation process for gas and liquid adsorption. Energy. Fuels. 32 (2):1255–64. doi:10.1021/acs.energyfuels.7b03211.
  • Wang, L. Y., Y. L. Xu, S. G. Jiang, M. G. Yu, T. X. Chu, W. Q. Zhang, Z. Y. Wu, and L. W. Kou. 2012. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Saf. Sci. 50 (7):1528–34. doi:10.1016/j.ssci.2012.03.006.
  • Wen, H., H. Wang, W. Y. Liu, and X. J. Cheng. 2020. Comparative study of experimental testing methods for characterization parameters of coal spontaneous combustion. Fuel 275:117880. doi:10.1016/j.fuel.2020.117880.
  • Wu, D., G. Liu, S. Chen, and R. Sun. 2015. An experimental investigation on heating rate effect in the thermal behavior of Perhydrous bituminous coal during pyrolysis. J. Therm. Anal. Calorim. 119 (3):2195–203. doi:10.1007/s10973-015-4401-y.
  • Wu, D., G. Liu, and R. Sun. 2014. Investigation on structural and thermodynamic characteristics of Perhydrous bituminous coal by Fourier transform infrared spectroscopy and thermogravimetry/mass spectrometry. Energy. Fuels. 28 (5):3024–35. doi:10.1021/ef5003183.
  • Wu, J., B. Wang, and F. Cheng. 2017. Thermal and kinetic characteristics of combustion of coal sludge. J. Therm. Anal. Calorim. 1899–1909. 129 (3):1899–909. doi:10.1007/s10973-017-6341-1.
  • Zhang, D., W. F. Wang, J. Deng, H. Wen, X. W. Zhai, and C. M. Shu. 2020. Thermokinetic characteristics of jurassic coal spontaneous combustion based on thermogravimetric analysis. Combust. Sci. Technol. 1:1–15.
  • Zhang, Y., Y. Liu, X. Shi, C. Yang, W. Wang, and Y. Li. 2018. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel 233:68–76. doi:10.1016/j.fuel.2018.06.052.
  • Zhao, J., T. Wang, Y. Zhang, J. Deng, J. J. Song, C. M. Shu, and Q. Zeng. 2020. Isokinetic analysis on the oxidation of Jurassic coal: a case study of samples from Xinjiang, China. J. Therm. Anal. Calorim 1–2. doi:10.1007/s10973-020-10145-8.
  • Zheng, Y., Q. Li, C. Yuan, Q. Tao, Y. Zhao, G. Zhang, J. Liu, and G. Qi. 2018. Thermodynamic analysis of high-pressure methane adsorption on coal-based activated carbon. Fuel 230:172–84. doi:10.1016/j.fuel.2018.05.056.
  • Zhou, J., S. Hao, L. Gao, and Y. Zhang. 2014. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine. Ann. Nucl. Energy. 72:237–41. doi:10.1016/j.anucene.2014.05.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.