244
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Flow Boiling and Heat Transfer of N-heptane Flow in a Microtube Heated by Concurrent Microflame

, , &
Pages 265-293 | Received 24 Feb 2021, Accepted 20 Jun 2021, Published online: 30 Jun 2021

References

  • Ambrose, D., and C. TSONOPOULOS. 1995. Vapor-Liquid critical properties of elements and compounds .2. Normal-Alkanes. J Chem Eng Data 40 (3):531–46. doi:10.1021/je00019a001.
  • ANDOGA, R., L. Főző, M. SCHRÖTTER, M. ČEŠKOVIČ, S. SZABO, R. Bréda, and M. SCHREINER. 2019. Intelligent thermal imaging-based diagnostics of turbojet engines. Applied Sciences 9 (11):2253. doi:10.3390/app9112253.
  • BAGUL, R., D. PILKHWAL, P. VIJAYAN, and J. JOSHI. 2013. Entrainment phenomenon in gas–liquid two-phase flow: A review. Sadhana 38 (6):1173–217. doi:10.1007/s12046-013-0193-6.
  • Ban, H., S. VENKATESH, and K. SAITO 1994. Convection-diffusion controlled laminar micro flames.
  • BASU, S., S. NDAO, G. J. MICHNA, Y. PELES, and M. K. Jensen. 2011. Flow boiling of R134a in circular microtubes—Part I: Study of heat transfer characteristics.J Heat Transfer (133): 051502-1. https://doi.org/10.1115/1.4003159
  • BERTSCH, S. S., E. A. GROLL, and S. V. GARIMELLA. 2009. Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels. International Journal of Multiphase Flow 35 (2):142–54. doi:10.1016/j.ijmultiphaseflow.2008.10.004.
  • CAO, Y., Z. KAWARA, T. YOKOMINE, and T. KUNUGI. 2016. Visualization study on bubble dynamical behavior in subcooled flow boiling under various subcooling degree and flowrates. Int J Heat Mass Transf 93:839–52. doi:10.1016/j.ijheatmasstransfer.2015.10.053.
  • CHEIN, R., Y.-C. Chen, and J. Chung. 2013. Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production. Appl. Energy 102:1022–34. doi:10.1016/j.apenergy.2012.06.010.
  • Chen, J., X. Peng, Z. YANG, and J. CHENG. 2009. Characteristics of liquid ethanol diffusion flames from mini tube nozzles. Combustion & Flame 156 (2):460–66. doi:10.1016/j.combustflame.2008.08.007.
  • Chen, J., and X. F. Peng 2009. Evaporating interface in a capillary tube with high heat flux induced by micro diffusion flame. Ht2008: Proceeding of the Asme Summer Heat Transfer Conference, Vol 3, 87–91. Jacksonville, Florida, USA . https://doi.org/10.1115/HT2008-56104
  • Chen, S. T., X. Y. Chen, L. Chen, Q. Y. ZHANG, and Y. HOU. 2019. Experimental study on the heat transfer characteristics of saturated liquid nitrogen flow boiling in small-diameter horizontal tubes. Experimental Thermal and Fluid Science 101:27–36. doi:10.1016/j.expthermflusci.2018.09.020.
  • Chen, T. L., and S. V. GARIMELLA. 2006. Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink. International Journal of Multiphase Flow 32 (8):957–71. doi:10.1016/j.ijmultiphaseflow.2006.03.002.
  • Chen, X., J. Li, D. ZHAO, M. T. RASHID, X. ZHOU, and N. Wang. 2021. Effects of porous media on partially premixed combustion and heat transfer in meso-scale burners fuelled with ethanol. Energy 224:120191. doi:10.1016/j.energy.2021.120191.
  • CHENG, T., C.-P. Chen, C.-S. Chen, Y.-H. Li, C.-Y. Wu, and Y.-C. CHAO. 2006a. Characteristics of microjet methane diffusion flames. Combust. Theory Modelling 10 (5):861–81. doi:10.1080/13647830600551917a.
  • CHENG, T., C.-P. Chen, C.-S. Chen, Y.-H. Li, C.-Y. Wu, and Y.-C. J.-C. T. CHAO, MODELLING. 2006b. Characteristics of microjet methane diffusion flames. Combustion Theory and Modelling. 10:861–81. https://doi.org/10.1080/13647830600551917a
  • Collier, J. G., and J. R. THOME 1996. Convective boiling and condensation.
  • CROWE, C. T. 2005. Multiphase flow handbook. CRC press. https://books.google.com.pk/books?hl=en&lr=&id=M0MrBgAAQBAJ&oi=fnd&pg=PP1&dq=Multiphase+flow+handbook&ots=fgJvZ9gTNr&sig=L4Dv-7tQ5YbXnX0OYvJmPvuaF0U&redir_esc=y#v=onepage&q=Multiphase%20flow%20handbook&f=false
  • DOBSON, M. K., and J. C. CHATO. 1998. Condensation in smooth horizontal tubes. Journal of Heat Transfer-Transactions of the Asme 120 (1):193–213. doi:10.1115/1.2830043.
  • E. M. SPARROW, S. H. L. 1962. Laminar heat transfer in tubes under Slip-Flow conditions. J Heat Transfer. 84 (4):363–369. https://doi.org/10.1115/1.3684399
  • FAYYADH, E. M., M. M. MAHMOUD, K. SEFIANE, and T. G. KARAYIANNIS. 2017. Flow boiling heat transfer of R134a in multi microchannels. Int J Heat Mass Transf 110:422–36. doi:10.1016/j.ijheatmasstransfer.2017.03.057.
  • FENG, M., N. F. Wang, J. W. Li, D. ZHAO, and R. YAO. 2018. Study on unsteady evaporation of n-heptane droplet in a heated tube. Int J Heat Mass Transf 122:539–56. doi:10.1016/j.ijheatmasstransfer.2018.01.105.
  • Gan, Y., J. CHENG, and Z. YANG. 2010a. Experimental study on the small‐scale diffusion flame of ethanol and the wall temperature field. Heat Transfer—Asian Research 39 (2):87–96. doi:10.1002/htj.20282.
  • Gan, Y., J. Dong, and Z. YANG. 2010b. Experimental study on the characteristics of ethanol evaporation and its diffusion flame under the effect of DC field. Heat Transfer—Asian Research 39 (2):77–86. doi:10.1002/htj.20283.
  • Gan, Y. U. N. H. U. A., and J. D. ZELIANG YANG 2010. Experimental study on the characteristics of ethanol
  • Gao, Y., Z. DAI, C. Li, and F. Wang. 2013. Effects of soot nanoparticles on heat transfer and flow in fire‐tube waste heat boiler. Asia-Pacific Journal of Chemical Engineering 8 (3):371–83. doi:10.1002/apj.1670.
  • Han, L., J. Li, D. ZHAO, Y. Xi, X. Gu, and N. Wang. 2021. Effect analysis on energy conversion enhancement and NOx emission reduction of ammonia/hydrogen fuelled wavy micro-combustor for micro-thermophotovoltaic application. Fuel 289:119755. doi:10.1016/j.fuel.2020.119755.
  • HETSRONI, G., D. Klein, A. MOSYAK, Z. SEGAL, and E. POGREBNYAK. 2004. Convective boiling in parallel microchannels. Microscale Thermophysical Engineering 8 (4):403–21. doi:10.1080/10893950490516965.
  • HOSSAIN, A., and Y. NAKAMURA 2015. Thermal and chemical structures formed in the micro burner of miniaturized hydrogen-air jet flames. Proceedings of the combustion institute, 35, 3413–20. Japan. https://doi.org/10.1016/j.proci.2014.08.008
  • HUSSAIN, T., C. N. MARKIDES, and R. BALACHANDRAN Flame dynamics in a micro-channeled combustor. AIP Conference Proceedings, 2015. American Institute of Physics, 130–37. Greece. https://doi.org/10.1063/1.4906639
  • JU, Y., and K. MARUTA. 2011. Microscale combustion: Technology development and fundamental research. Progress in Energy and Combustion Science 37 (6):669–715. doi:10.1016/j.pecs.2011.03.001.
  • Lee, J., and I. MUDAWAR. 2005. Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II - heat transfer characteristics. Int J Heat Mass Transf 48 (5):941–55. doi:10.1016/j.ijheatmasstransfer.2004.09.019.
  • Lee, P., F. TSENG, C. J. I. J. O. H. Pan, and M. Transfer. 2004. Bubble dynamics in microchannels. Part I: Single microchannel. Int J Heat Mass Transf 47 (25):5575–89. doi:10.1016/j.ijheatmasstransfer.2004.02.031.
  • LEMMON, E. W., I. H. Bell, M. L. Huber, and M. O. MCLINDEN 2018. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP. 10 ed.: National Institute of Standards and Technology.
  • Li, J., S. Chou, W. YANG, and Z. Li. 2008. Experimental and numerical study of the wall temperature of cylindrical micro combustors. Journal of Micromechanics & Microengineering 19 (1):15019. doi:10.1088/0960-1317/19/1/015019.
  • Li, J., J. Huang, X. Chen, D. ZHAO, B. SHI, Z. Wei, and N. Wang. 2016a. Effects of heat recirculation on combustion characteristics of n-heptane in micro combustors. Appl. Therm. Eng. 109:697–708. doi:10.1016/j.applthermaleng.2016.08.085.
  • Li, J., J. Huang, M. YAN, D. ZHAO, J. ZHAO, Z. Wei, and N. Wang. 2014. Experimental study of n-heptane/air combustion in meso-scale burners with porous media. Experimental Thermal and Fluid Science 52:47–58. doi:10.1016/j.expthermflusci.2013.08.021.
  • Li, J., J. Huang, D. ZHAO, J. ZHAO, M. YAN, and N. Wang. 2012. Diffusion combustion of liquid heptane in a small tube with and without heat recirculating. Combustion Science and Technology 184 (10–11):1591–607. doi:10.1080/00102202.2012.690673.
  • Li, J., Y. Wang, J. Chen, J. SHI, and X. LIU. 2016b. Experimental study on standing wave regimes of premixed H2–air combustion in planar micro-combustors partially filled with porous medium. Fuel 167:98–105. doi:10.1016/j.fuel.2015.11.033.
  • Li, X., J. ZHANG, H. L. YANG, L. Q. JIANG, X. H. Wang, and D. Q. ZHAO. 2017. Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube. Appl. Therm. Eng. 112:296–303. doi:10.1016/j.applthermaleng.2016.10.082.
  • Lie, Y., F. SU, R. LAI, T. J. I. J. O. H. Lin, and M. Transfer. 2006. Experimental study of evaporation heat transfer characteristics of refrigerants R-134a and R-407C in horizontal small tubes. Int J Heat Mass Transf 49 (1–2):207–18. doi:10.1016/j.ijheatmasstransfer.2005.07.018.
  • MARUTA, K. Flame Chromatography: Toward fuel indexing based on multiple weak flames in a Meso-Scale channel with a prescribed temperature profile. ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, 2012. American Society of Mechanical Engineers Digital Collection, 593-598. Canada. https://doi.org/10.1115/ICNMM2011-58291
  • MATTA, L., Y. NEUMEIER, B. Lemon, and B. ZINN 2002. Characteristics of microscale diffusion flames. Proceedings of the Combustion Institute, 29, 933–39. Japan. https://doi.org/10.1016/S1540-7489(02)80118-3
  • Mills, A. F. 1999. Heat transfer. New Jersey: Prentice Hall.
  • Mohammad, E. J., M. JAWADKADHIM, W. I. HAMAD, S. Y. HELYEL, A. Alrsaak, F. Al-kazraji, and A. HADEEABUD. 2014. Study sobel edge detection effect on the imageedges using MATLAB. International Journal of Innovative Research in Science, Engineering Technology 3:10408–15.
  • MUWANGA, R., and I. HASSAN. 2007. A flow boiling heat transfer investigation of FC-72 in a microtube using-liquid crystal thermography. Journal of Heat Transfer-Transactions of the Asme 129 (8):977–87. doi:10.1115/1.2728905.
  • NAKAMURA, Y., A. KUBOTA, H. Yamashita, and K. SAITO B13-118 near extinction flame structure of micro-diffusion flames. International Symposium on Micro-Mechanical Engineering: ISMME, 2003. 日本機械学会, 163–70. Japan.
  • Norton, D. G., and D. G. VLACHOS. 2003. Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures. Chem Eng Sci 58 (21):4871–82. doi:10.1016/j.ces.2002.12.005.
  • OKYAY, G., S. Bellayer, F. SAMYN, M. JIMENEZ, and S. BOURBIGOT. 2018. Characterization of in-flame soot from balsa composite combustion during mass loss cone calorimeter tests. Polym. Degrad. Stab. 154:304–11. doi:10.1016/j.polymdegradstab.2018.06.013.
  • Pike-wilson, E. A., and T. G. KARAYIANNIS. 2014. Flow boiling of R245fa in 1.1 mm diameter stainless steel, brass and copper tubes. Experimental Thermal and Fluid Science 59:166–83. doi:10.1016/j.expthermflusci.2014.02.024.
  • Polansky, J., and T. KAYA. 2016. Stability of an evaporating meniscus: Part I - Theoretical analysis. International Journal of Thermal Sciences 107:209–19. doi:10.1016/j.ijthermalsci.2016.03.021.
  • REIMANN, J., S.-A. KUHLMANN, and S. Will. 2010. Investigations on soot formation in heptane jet diffusion flames by optical techniques. Microgravity Science Technology 22 (4):499–505. doi:10.1007/s12217-010-9204-y.
  • ROHSENOW, W. M. 1952. A method for correlating heat transfer data for surface boiling of liquids. Transactions of ASME 74:969–76.
  • ROMELI, D., G. BARIGOZZI, S. ESPOSITO, G. ROSACE, and G. SALESI. 2013. High sensitivity measurements of thermal properties of textile fabrics. Polym Test 32 (6):1029–36. doi:10.1016/j.polymertesting.2013.05.011.
  • SAISIRIRAT, P., F. Foucher, S. Chanchaona, and C. Mounaïm-rousselle A study of n-Heptane/Ethanol HCCI combustion characteristics by experiment and detailed chemical kinetics simulation. Proceedings of the European Combustion Meeting, 2009. Austria.
  • Shirsat, V., and A. Gupta. 2011. Performance characteristics of methanol and kerosene fuelled meso-scale heat-recirculating combustors. Appl. Energy 88 (12):5069–82. doi:10.1016/j.apenergy.2011.07.019.
  • SMYTH, S. A., K. BIJJULA, and D. C. KYRITSIS. 2007. Intermediate Reynolds/Peclet number, flat plate boundary layer flows over catalytic surfaces for micro-combustion applications. International Journal of Alternative Propulsion 1 (2/3):294–308. doi:10.1504/IJAP.2007.013026.
  • SMYTH, S. A., K. T. Christensen, and D. C. KYRITSIS 2009. Intermediate reynolds number flat plate boundary layer flows over catalytic surfaces for “micro”-combustion applications. Proceedings of the Combustion Institute, 32, 3035–42. Canada https://doi.org/10.1016/j.proci.2008.05.054.
  • SMYTH, S. A., and D. C. KYRITSIS. 2012. Experimental determination of the structure of catalytic micro-combustion flows over small-scale flat plates for methane and propane fuel. Combustion & Flame 159 (2):802–16. doi:10.1016/j.combustflame.2011.08.022.
  • SPADACCINI, C. M., X. ZHANG, C. P. CADOU, N. MIKI, and I. A. WAITZ. 2003. Preliminary development of a hydrocarbon-fueled catalytic micro-combustor. Sensors Actuators A: Physical 103 (1–2):219–24. doi:10.1016/S0924-4247(02)00335-7.
  • Steiner, D., and J. TABOREK. 1993. Flow boiling Heat-Transfer in vertical tubes correlated by an asymptotic model (vol 13, pg 54, 1992). Heat Transfer Engineering 14:61–61.
  • Sunderland, P. B., J. E. HAYLETT, D. L. Urban, and V. NAYAGAM. 2008. Lengths of laminar jet diffusion flames under elevated gravity. Combustion and Flame 152 (1–2):60–68. doi:10.1016/j.combustflame.2007.08.011.
  • VEERARAGAVAN, A., and C. P. CADOU. 2008. Heat transfer in mini∕ microchannels with combustion: A simple analysis for application in nonintrusive IR diagnostics. J Heat Transfer 130. https://doi.org/10.1115/1.2969760
  • VEERARAGAVAN, A., and C. P. CADOU. 2011. Flame speed predictions in planar micro/mesoscale combustors with conjugate heat transfer. Combustion & Flame 158 (11):2178–87. doi:10.1016/j.combustflame.2011.04.006.
  • Welssh, E. 2011. What is chemiluminescence? Science in School. 19: 1-2.
  • WIERZBICKI, T. A., I. C. Lee, and A. K. Gupta. 2014. Performance of synthetic jet fuels in a meso-scale heat recirculating combustor. Appl. Energy 118:41–47. doi:10.1016/j.apenergy.2013.12.021.
  • Wong, K. C. 2012. Thermal analysis of a metal foam subject to jet impingement. International Communications in Heat and Mass Transfer 39 (7):960–65. doi:10.1016/j.icheatmasstransfer.2012.05.021.
  • Xu, T., X.-N. Gao, J. YANG, Y.-H. Gan, Z.-L. YANG, and Z.-G. ZHANG. 2013. Experimental and numerical simulation study of the microscale laminar flow diffusion combustion of liquid ethanol. Ind Eng Chem Res 52 (23):8021–27. doi:10.1021/ie303171v.
  • YANG, Z., J. CHENG, T. Xu, and Y. Gan. Experimental study of small diffusion flame under strong electric field. ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, 2008a. American Society of Mechanical Engineers Digital Collection, 841–44. Taiwan. https://doi.org/10.1115/MNHT2008-52089
  • YANG, Z., T. Xu, and Y. Gan. Experimental study on the diffusion flame using liquid ethanol as fuel in mini-scale. ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, 2008b. American Society of Mechanical Engineers Digital Collection, 853–57. Taiwan. https://doi.org/10.1115/MNHT2008-52106
  • Yen, T. H., N. KASAGI, and Y. Suzuki. 2003. Forced convective boiling heat transfer in microtubes at low mass and heat fluxes. International Journal of Multiphase Flow 29 (12):1771–92. doi:10.1016/j.ijmultiphaseflow.2003.09.004.
  • YUN, R., Y. Kim, and M. S. Kim. 2005. Convective boiling heat transfer characteristics of CO2 in microchannels. Int J Heat Mass Transf 48 (2):235–42. doi:10.1016/j.ijheatmasstransfer.2004.08.019.
  • ZHANG, Z. M. 2007. Nano/microscale heat transfer. New York: McGraw-Hill.
  • ZHOU, X., Z. ZHANG, W. Kong, and N. Du. 2016. Investigations of leakage mechanisms and its influences on a micro swing engine considering rarefaction effects. Appl. Therm. Eng. 106:674–80. doi:10.1016/j.applthermaleng.2016.06.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.