208
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Investigation of Soot Free Length of Jet Flame of Propane and Carbon Dioxide Gas Mixture

, , , , &
Pages 3467-3479 | Received 20 Jun 2021, Accepted 09 Aug 2021, Published online: 24 Aug 2021

References

  • Bi, Y. B., J. Chen, X. Chen, S. X. Lu, and C. Li. 2019. Experimental investigation of nitrogen addition effect on combustion characteristics of buoyant turbulent diffusion flame. Fuel 240:237–43. doi:10.1016/j.fuel.2018.12.001.
  • Delichatsios, M. A., and L. Orloff. 1998. Effects of turbulence on flame radiation from diffusion flames. Proc. Combust. Inst. 22:1271–79. doi:10.1016/S0082-0784(89)80138-9.
  • Denker, D., A. Attili, K. Kleinheinz, and H. Pitsch. 2020. Gradient trajectory analysis of the burning rate in turbulent premixed jet flames. Combust. Sci. Technol. 192:2189–207. doi:10.1080/00102202.2020.1811242.
  • Dou, Y. L., H. Q. Liu, B. Liu, Y. Zhang, Y. Q. Liu, X. Z. Cheng, and C. F. Tao. 2021. Effects of carbon dioxide addition to fuel on flame radiation fraction in propane diffusion flames. Energy 218:119–552. doi:10.1016/j.energy.2020.119552.
  • Drysdale, D. 2011. An introduction to fire dynamics. third ed. UK: John Wiley & Sons, Ltd.
  • Fang, J., J. W. Wang, J. F. Guan, Y. M. Zhang, and J. J. Wang. 2016. Momentum- and buoyancy driven laminar methane diffusion flame shapes and radiation characteristics at sub-atmospheric pressures. Fuel 163:295–303. doi:10.1016/j.fuel.2015.09.068.
  • Gao, Z. H., J. Ji, H. X. Wan, K. Y. Li, and J. H. Sun. 2015. An investigation of the detailed flame shape and flame length under the ceiling of a channel. Proc. Combust. Inst. 35:2657–64. doi:10.1016/j.proci.2014.06.078.
  • Gu, M. Y., H. Q. Chu, and F. S. Liu. 2019. Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame. Combust. Flame 166:216–28. doi:10.1016/j.combustflame.2016.01.023.
  • He, P. X., P. Wang, K. Wang, X. P. Liu, C. M. Wang, C. F. Tao, and Y. Q. Liu 2019. The evolution on the behaviour of flame height and air flow for double rectangular pool fires. Fuel 237:486–93. doi:10.1016/j.fuel.2018.10.027.
  • Hu, L. H., Q. Wang, M. Delichatsios, S. X. Lu, and F. Tang. 2014a. Flame radiation fraction behaviors of sooty buoyant turbulent jet diffusion flames in reduced- and normal atmospheric pressures and a global correlation with Reynolds number. Fuel 116:781–86. doi:10.1016/j.fuel.2013.08.059.
  • Hu, L. H., X. C. Zhang, X. L. Zhang, K. H. Lu, and Z. M. Guo. 2017. Flame heights and fraction of stoichiometric air entrained for rectangular turbulent jet fires in a sub-atmospheric pressure. Proc. Combust. Inst. 36:2995–3002. doi:10.1016/j.proci.2016.07.090.
  • Hu, X., Q. Yu, J. Liu, and N. Sun. 2014b. Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation. Energy 70:626–34. doi:10.1016/j.energy.2014.04.029.
  • Huang, R. F., and J. M. Chang. 1994. The stability and visualized flame and flow structures of a combusting jet in cross flow. Combust. Flame 98:267–78. doi:10.1016/0010-2180(94)90241-0.
  • Jiang, Y. H., G. X. Li, H. M. Li, G. P. Zhang, and J. C. Lv. 2019. Structure and laminar flame speed of an ammonia/methane/air premixed flame under varying pressure and equivalence ratio. Energy Fuels 33:12736–41. doi:10.1021/acs.energyfuels.9b02580.
  • Johnson, A. D., H. M. Brightwell, and A. J. Carsley. 1994. Model for predicting the thermal radiation hazards from large-scale horizontally released natural gas jet fires. Process Saf Environ Prot. Part B 72:157–66.
  • Kumar, P., and D. Mishra. 2008. Experimental investigation of laminar LPG–H2 jet diffusion flame. Int. J. Hydrogen Energy 33:225–31. doi:10.1016/j.ijhydene.2007.09.023.
  • Lee, J. C., C. E. Frouzakis, and K. Boulouchos. 2000. Numerical study of opposed-Jet H2/Air diffusion flame-vortex interactions. Combust. Sci. Technol. 158:365–88. doi:10.1080/00102200008947341.
  • Mahesh, A. S., and D. P. Mishra. 2008. Flame stability and emission characteristics of turbulent LPG IDF in a back step burner. Fuel 87:2614–19. doi:10.1016/j.fuel.2008.02.001.
  • Mazas, A. N., B. Fiorina, D. A. Lacoste, and T. Schuller. 2011. Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames. Combust. Flame 158:2428–40. doi:10.1016/j.combustflame.2011.05.014.
  • Mishra, D. P., and P. Kumar. 2010. Experimental study of bluff-body stabilized LPG-H2 jet diffusion flame with preheated reactant. Fuel 89:212–18. doi:10.1016/j.fuel.2009.07.030.
  • Otsu, N. A. 1979. Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9:62–66. doi:10.1109/TSMC.1979.4310076.
  • Ren, F., L. K. Xiang, H. Q. Chu, Y. C. Ya, W. W. Han, and X. K. Nie. 2020. Numerical investigation on the effect of CO2 and steam for the H2 intermediate formation and NOX emission in laminar premixed methane/air flames. Int. J. Hydrogen Energy 45:3785–94. doi:10.1016/j.ijhydene.2019.05.096.
  • Santos, A., and M. Costa. 2005. Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames. Combust. Flame 142:160–69. doi:10.1016/j.combustflame.2005.03.004.
  • Sobiesiak, A., and J. C. Wenzell. 2005. Characteristics and structure of inverse flames of natural gas. Proc. Combust. Inst. 30:743–49. doi:10.1016/j.proci.2004.08.173.
  • Tao, C. F., B. Liu, Y. L. Dou, Y. J. Qian, Y. Zhang, and S. Meng. 2021. The experimental study of flame height and lift-off height of propane diffusion flames diluted by carbon dioxide. Fuel 290:119–958. doi:10.1016/j.fuel.2020.119958.
  • Tao, C. F., Y. Q. Liu, F. Tang, and Q. Wang. 2018. An experimental investigation of the flame height and air entrainment of ring pool fire. Fuel 216:734–37. doi:10.1016/j.fuel.2017.11.141.
  • Turns, S. R. 1996. An Introduction to combustion: Concepts and applications. New York: McGraw-hill.
  • Xin, Y. B. 2014. Estimation of chemical heat release rate in rack storage fires based on flame volume. Fire. Safety. J. 63:29–36. doi:10.1016/j.firesaf.2013.11.004.
  • Zhang, D., J. Fang, J. F. Guan, J. W. Wang, Y. Zeng, J. J. Wang, and Y. M. Zhang. 2014. Laminar jet methane/air diffusion flame shapes and radiation of low air velocity coflow in microgravity. Fuel 130:25–33. doi:10.1016/j.fuel.2014.04.008.
  • Zhang, X. L., L. H. Hu, Q. Wang, X. C. Zhang, and P. Gao. 2015. A mathematical model forflame volume estimation based on flame height of turbulent gaseous fuel jet. Energy. Convers. Manage 103:276–83. doi:10.1016/j.enconman.2015.06.061.
  • Zhang, X. L., L. H. Hu, Q. Wang, X. C. Zhang, and Y. Jiang. 2017. Soot free length fraction of buoyant turbulent non-premixed jet flames in normal- and a sub-atmospheric pressure. Appl. Therm. Eng 110:111–14. doi:10.1016/j.applthermaleng.2016.08.128.
  • Zhang, X. L., L. H. Hu, and X. C. Zhang. 2021. Flame lengths in two directions underneath a ceiling induced by line-source fire: An experimental study and global model. Proc. Combust. Inst 38:4561–68. doi:10.1016/j.proci.2020.07.096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.