257
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigations on turbulent jet ignition with gasoline as an auxiliary fuel in rapid compression machines

, , , &
Pages 672-691 | Received 20 Jan 2021, Accepted 13 Aug 2021, Published online: 01 Sep 2021

References

  • Abbasi Atibeh, P., M. J. Brear, P. A. Dennis, et al. 2013. Lean limit combustion analysis for a spark ignition natural gas internal combustion engine. Combust. Sci. Technol. 185 (8):1151–68.
  • Allison, P. M., M. de Oliveira, A. Giusti, et al. 2018. pre-chamber ignition mechanism: Experiments and simulations on turbulent jet flame structure. Fuel 230:274–81.
  • Attard, W. P., and H. Blaxill. 2012. A gasoline fueled pre-chamber jet ignition combustion system at unthrottled conditions. SAE International Journal of Engines 5 (2):315–29.
  • Attard, W. P., N. Fraser, P. Parsons, et al. 2010. A turbulent jet ignition pre-chamber combustion system for large fuel economy improvements in a modern vehicle powertrain. SAE International Journal of Engines 3 (2):20–37.
  • Attard, W. P., and P. Parsons. 2010a. Flame kernel development for a spark initiated pre-chamber combustion system capable of high load, high efficiency and near zero NOx emissions. SAE International Journal of Engines 3 (2):408–27.
  • Benajes, J., R. Novella, J. Gomez-Soriano, et al. 2020. Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines. Appl. Therm. Eng. 178:115501.
  • Benajes, J., R. Novella, J. Gómez-Soriano, et al. 2019. Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines. Appl. Energy 248:576–88.
  • Broatch, A., P. Olmeda, X. Margot, et al. 2019. Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Appl. Therm. Eng. 148:674–83.
  • Gentz, G., M. Gholamisheeri, and E. Toulson. 2017. A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization. Appl. Energy 189:385–94.
  • Gholamisheeri, M., B. C. Thelen, G. R. Gentz, et al. 2016. Rapid compression machine study of a premixed, variable inlet density and flow rate, confined turbulent jet. Combust. Flame 169:321–32.
  • Gholamisheeri, M., I. S. Wichman, and E. Toulson. 2017. A study of the turbulent jet flow field in a methane fueled turbulent jet ignition (TJI) system. Combust. Flame 183:194–206.
  • Gussak, L. A. 1975. High chemical activity of incomplete combustion products and a method of prechamber torch ignition for avalanche activation of combustion in internal combustion engines. In SAE Transactions, 2421–45.
  • Gussak, L. A., V. P. Karpov, and Y. V. Tikhonov. 1979. The application of lag-process in prechamber engines. In SAE Transactions, 2355–80.
  • Hu, E., Z. Huang, B. Liu, et al. 2009. Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas–hydrogen blends combining with EGR. Int. J. Hydrogen Energy 34 (2):1035–44.
  • Huang, M., S. Gowdagiri, X. M. Cesari, et al. 2016. Diesel engine CFD simulations: Influence of fuel variability on ignition delay. Fuel 181:170–77.
  • Li, F., Z. Zhao, Z. Wang. et al. 2019. Experimental and numerical study of a methane-fueled pre-chamber system in rapid compression machine. In Combust. Sci. Technol, 1–32.
  • Liu, X., H. Wang, Z. Zheng, et al. 2016. Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications. Energy 114:542–58.
  • Liu, Y. D., M. Jia, M. Z. Xie, et al. 2012. Enhancement on a skeletal kinetic model for primary reference fuel oxidation by using a semidecoupling methodology. Energy Fuels 26 (12):7069–83.
  • Mehl, M., W. J. Pitz, C. K. Westbrook, et al. 2011. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc Combust Inst 33:193–200.
  • Oppenheim, A. K. 2002. Prospects for Combustion in Piston Engines. In SAE Transactions, 1707–21.
  • Oppenheim, A. K., J. Beltramo, D. W. Faris, et al. 1989. Pulsed jet combustion-a key to controlled combustion engines. SAE Technical Paper 890153.
  • Pan, J., Z. Hu, H. Wei, et al. 2019. Understanding strong knocking mechanism through high-strength optical rapid compression machines. Combust. Flame 202:1–15.
  • Pan, J., Z. Zheng, H. Wei, et al. 2020. An experimental investigation on pre-ignition phenomena: Emphasis on the role of turbulence. Proc Combust Inst
  • Pope, S. B. 2000. Turbulent flows. Cambridge University Press.
  • Starikovskiy, A., and N. Aleksandrov. 2013. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 39 (1):61–110.
  • Toulson, E., H. J. Schock, and W. P. Attard. 2010. A review of pre-chamber initiated jet ignition combustion systems. In SAE Technical Paper, 01–2263.
  • Validi, A. A., H. Schock, and F. Jaberi. 2017. Turbulent jet ignition assisted combustion in a rapid compression machine. Combust. Flame 186:65–82.
  • Wei, H., R. Zhang, L. Chen, et al. 2021. Effects of high ignition energy on lean combustion characteristics of natural gas using an optical engine with a high compression ratio. Energy 223:120053.
  • Wolk, B., A. DeFilippo, J. Y. Chen, et al. 2013. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber. Combust. Flame 160 (7):1225–34.
  • Xu, G., M. Kotzagianni, P. Kyrtatos, et al. 2019. Experimental and numerical investigations of the unscavenged prechamber combustion in a rapid compression and expansion machine under engine-like condition. Combust. Flame 204:68–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.