141
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Exploring the Possibility of Achieving Partially Premixed Charge Compression Ignition Combustion of Biodiesel in Comparison to Ultra Low Sulfur Diesel on a High Compression Ratio Engine

, &
Pages 746-777 | Received 16 Mar 2021, Accepted 26 Aug 2021, Published online: 02 Sep 2021

References

  • Administration, U. S. E. I. 2020. EIA now estimates biodiesel production and consumption by state [Online]. EIA. Accessed July 7, 2021. https://www.eia.gov/todayinenergy/detail.php?id=44496
  • Agarwal, A., M. Rana, and J.-H. Park. 2018. Advancement in technologies for the depolymerization of lignin. Fuel Process. Technol. 181:115–32.
  • Assanis, D. N., Z. S. Filipi, S. B. Fiveland, and M. Syrimis. 2003. A predictive ignition delay correlation under steady-state and transient operation of a direct injection diesel engine. J. Eng. Gas Turbines Power 125 (2):450–57. doi:10.1115/1.1563238.
  • Bamgboye, A., and A. C. Hansen. 2008. Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int. Agrophys. 22:21.
  • Benjumea, P., J. R. Agudelo, and A. F. Agudelo. 2011. Effect of the degree of unsaturation of biodiesel fuels on engine performance, combustion characteristics, and emissions. Energy Fuels 25 (1):77–85. doi:10.1021/ef101096x.
  • Cecrle, E., C. Depcik, A. Duncan, J. Guo, M. Mangus, E. Peltier, S. Stagg-Williams, and Y. Zhong. 2012. Investigation of the effects of biodiesel feedstock on the performance and emissions of a single-cylinder diesel engine. Energy Fuels 26 (4):2331–41. doi:10.1021/ef2017557.
  • Cecrle, E. D. 2011. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion. Lawrence, Kansas, USA: University of Kansas.
  • Cheng, X., H. K. Ng, S. Gan, J. H. Ho, and K. M. Pang. 2015. Development and validation of a generic reduced chemical kinetic mechanism for CFD spray combustion modelling of biodiesel fuels. Combust. Flame 162 (6):2354–70. doi:10.1016/j.combustflame.2015.02.003.
  • Churkunti, P. R. 2015. Combustion performance of waste-derived fuels with respect to ultra-low sulfur diesel in a compression ignition engine. Lawrence, Kansas, USA: University of Kansas.
  • Coniglio, L., H. Bennadji, P. A. Glaude, O. Herbinet, and F. Billaud. 2013. Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and modeling–advances and future refinements. Prog. Energy Combust. Sci. 39:340–82.
  • Demirbaş, A. 2002. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers. Manage. 43 (17):2349–56. doi:10.1016/S0196-8904(01)00170-4.
  • Demirbas, A. 2007. Importance of biodiesel as transportation fuel. Energy Policy 35 (9):4661–70. doi:10.1016/j.enpol.2007.04.003.
  • Dickey, D. W., T. W. Ryan, and A. C. Matheaus 1998. NOx control in heavy-duty diesel engines-what is the limit? SAE Technical Paper.
  • Enweremadu, C. C. and H. L. Rutto. 2010. Combustion, emission and engine performance characteristics of used cooking oil biodiesel—A review. Renewable Sustainable Energy Rev. 14(9):2863–2873.
  • Fang, T., Y.-C. Lin, T. M. Foong, and C.-F. Lee. 2008b. Reducing NOx emissions from a biodiesel-fueled engine by use of low-temperature combustion. Environ. Sci. Technol. 42 (23):8865–70. doi:10.1021/es8001635.
  • Fang, T., Y.-C. Lin, T. M. Foong, and F. L. Chia-Fon 2008a. Spray and combustion visualization in an optical HSDI diesel engine operated in low-temperature combustion mode with bio-diesel and diesel fuels. SAE Technical Paper.
  • Figliola, R., and D. Beasley. 2010. Theory and design for mechanical measurements 5th ed by R. Figliola and D. Beasley: Mechanical measurements. USA: Digital Designs.
  • Fischer, S., F. Dryer, and H. Curran. 2000. The reaction kinetics of dimethyl ether. I: High‐temperature pyrolysis and oxidation in flow reactors. Int. J. Chem. Kinet. 32 (12):713–40. doi:10.1002/1097-4601(2000)32:12<713::AID-KIN1>3.0.CO;2-9.
  • Gauthier, B., D. F. Davidson, and R. K. Hanson. 2004. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures. Combust. Flame 139:300–11.
  • Gowdagiri, S., W. Wang, and M. A. Oehlschlaeger. 2014. A shock tube ignition delay study of conventional diesel fuel and hydroprocessed renewable diesel fuel from algal oil. Fuel 128:21–29. doi:10.1016/j.fuel.2014.02.064.
  • Graboski, M. S., and R. L. Mccormick. 1998. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust. Sci. 24 (2):125–64. doi:10.1016/S0360-1285(97)00034-8.
  • Guo, J., E. Peltier, R. E. Carter, A. J. Krejci, S. M. Stagg-Williams, and C. Depcik 2012. Waste cooking oil biodiesel use in two off-road diesel engines. ISRN Renewable Energy, 2012.
  • Hasan, M., M. Rahman, and K. Kadirgama. 2015. A review on homogeneous charge compression ignition engine performance using biodiesel-diesel blend as a fuel. Int. J. Automot. Mech. Eng. 11:2199. doi:10.15282/ijame.11.2015.3.0184.
  • Helal, N. M., H. F. Alharby, B. M. Alharbi, A. Bamagoos, and A. M. Hashim. 2020. Thymelaea hirsuta and Echinops spinosus: Xerophytic plants with high potential for first-generation biodiesel production. Sustainability 12 (3):1137. doi:10.3390/su12031137.
  • Heywood, J. B. 1988. Internal combustion engine fundamentals. New York: Mcgraw-hill.
  • Hunicz, J., J. Matijošius, A. Rimkus, A. Kilikevičius, P. Kordos, and M. Mikulski. 2020. Efficient hydrotreated vegetable oil combustion under partially premixed conditions with heavy exhaust gas recirculation. Fuel 268:117350. doi:10.1016/j.fuel.2020.117350.
  • Jiménez-Espadafor, F. J., M. Torres, J. A. Velez, E. Carvajal, and J. A. Becerra. 2012. Experimental analysis of low temperature combustion mode with diesel and biodiesel fuels: A method for reducing NOx and soot emissions. Fuel Process. Technol. 103:57–63. doi:10.1016/j.fuproc.2011.11.014.
  • Kaletnik, H., V. Pryshliak, and N. Pryshliak. 2020. Public policy and biofuels: Energy, environment and food trilemma. J. Environ. Manag. Tour. 10 (3):479–87. doi:10.14505//jemt.v10.3(35).01.
  • Karra, P. K., M. K. Veltman, and S.-C. Kong. 2008. Characteristics of engine emissions using biodiesel blends in low-temperature combustion regimes. Energy Fuels 22 (6):3763–70. doi:10.1021/ef8004493.
  • Kim, J., J. Jang, K. Lee, Y. Lee, S. Oh, and S. Lee. 2014. Combustion and emissions characteristics of Diesel and soybean biodiesel over wide ranges of intake pressure and oxygen concentration in a compression–ignition engine at a light-load condition. Fuel 129:11–19. doi:10.1016/j.fuel.2014.03.022.
  • Knothe, G., J. Krahl, and J. Van Gerpen. 2015. The biodiesel handbook.  USA: Elsevier.
  • Konur, O. 2021. Rapeseed oil-based biodiesel fuels: A review of the research. Biodiesel Fuels Based on Edible and Nonedible Feedstocks, Wastes, and Algae, 497–514.
  • Langness, C., M. Mangus, and C. Depcik 2014. Construction, instrumentation, and implementation of a low cost, single-cylinder compression ignition engine test cell. SAE Technical Paper.
  • Lee, C. S., S. W. Park, and S. I. Kwon. 2005. An experimental study on the atomization and combustion characteristics of biodiesel-blended fuels. Energy Fuels 19 (5):2201–08. doi:10.1021/ef050026h.
  • Lee, J.-H., S. Goto, T. Tsurushima, T. Miyamoto, and T. Wakisaka 2000. Effects of injection conditions on mixture formation process in a premixed compression ignition engine. SAE Technical Paper.
  • Lee, S., J. Jang, S. Oh, Y. Lee, J. Kim, and K. Lee 2013. Comparative study on effect of intake pressure on diesel and biodiesel low temperature combustion characteristics in a compression ignition engine. SAE Technical Paper.
  • Levine, R. D. 2009. Molecular reaction dynamics. United Kingdom: Cambridge University Press.
  • Liu, Z., and G. A. Karim. 1995. The ignition delay period in dual fuel engines. SAE Trans. 104:354–62.
  • Luong, M. B., F. E. H. Pérez, and H. G. Im. 2020. Prediction of ignition modes of NTC-fuel/air mixtures with temperature and concentration fluctuations. Combust. Flame 213:382–93. doi:10.1016/j.combustflame.2019.12.002.
  • Mangus, M., F. Kiani, J. Mattson, C. Depcik, E. Peltier, and S. Stagg-Williams. 2014. Comparison of neat biodiesels and ULSD in an optimized single-cylinder diesel engine with electronically-controlled fuel injection. Energy Fuels 28 (6):3849–62. doi:10.1021/ef500417b.
  • Mangus, M., F. Kiani, J. Mattson, D. Tabakh, J. Petka, C. Depcik, E. Peltier, and S. Stagg-Williams. 2015. Investigating the compression ignition combustion of multiple biodiesel/ULSD (ultra-low sulfur diesel) blends via common-rail injection. Energy 89:932–45. doi:10.1016/j.energy.2015.06.040.
  • Mangus, M. D. 2014. Implementation of engine control and measurement strategies for biofuel research in compression-ignition engines. Lawrence, Kansas, USA: University of Kansas.
  • Mathivanan, K., J. Mallikarjuna, and A. Ramesh. 2019. Effect of timing and pattern of fuel injection on performance and emissions of a diesel engine in the low-temperature combustion mode–An experimental investigation. J. Appl. Fluid. Mech. 12.
  • Mattson, J. M. and C. Depcik. 2014. Emissions–calibrated equilibrium heat release model for direct injection compression ignition engines. Fuel. 117:1096–1110.
  • Mattson, J. M. S. 2013. Power, efficiency, and emissions optimization of a single cylinder direct-injected diesel engine for testing of alternative fuels through heat release modeling (Doctoral dissertation, University of Kansas).
  • Mccormick, R. L., M. S. Graboski, T. L. Alleman, A. M. Herring, and K. S. Tyson. 2001. Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ. Sci. Technol. 35 (9):1742–47. doi:10.1021/es001636t.
  • Mizik, T., and G. Gyarmati. 2021. Economic and sustainability of biodiesel production—A systematic literature review. Clean Technol. 3 (1):19–36. doi:10.3390/cleantechnol3010002.
  • Mohanamurugan, S., and S. Sendilvelan. 2011. Emission and combustion characteristics of different fuel In A HCCI engine. Int. J. Automot. Mech. Eng. 3:279–92. doi:10.15282/ijame.3.2011.5.0024.
  • Mueller, C. J., A. L. Boehman, and G. C. Martin. 2009. An experimental investigation of the origin of increased NOx emissions when fueling a heavy-duty compression-ignition engine with soy biodiesel. SAE Int. J. Fuels Lubr. 2 (1):789–816. doi:10.4271/2009-01-1792.
  • Muñoz, R., and C. Gonzalez-Fernandez. 2017. Microalgae-based biofuels and bioproducts: From feedstock cultivation to end-products. United Kingdom: Woodhead Publishing.
  • Naidja, A., C. Krishna, T. Butcher, and D. Mahajan. 2003. Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems. Prog. Energy Combust. Sci. 29:155–91.
  • Narayanan, A. M., and T. J. Jacobs. 2015. Observed differences in low-temperature heat release and their possible effect on efficiency between petroleum diesel and soybean biodiesel operating in low-temperature combustion mode. Energy Fuels 29 (7):4510–21. doi:10.1021/acs.energyfuels.5b00558.
  • Northrop, W. F., S. V. Bohac, and D. N. Assanis. 2009. Premixed low temperature combustion of biodiesel and blends in a high speed compression ignition engine. SAE Int. J. Fuels Lubr. 2 (1):28–40. doi:10.4271/2009-01-0133.
  • Oo, C. W., M. Shioji, H. Kawanabe, S. A. Roces, and N. P. Dugos. 2014. A skeletal kinetic model for biodiesel fuels surrogate blend under diesel-engine conditions. International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), 2014. IEEE, Palawan Philippines, 1–6.
  • Oo, C. W., M. Shioji, S. Nakao, N. N. Dung, I. Reksowardojo, S. A. Roces, and N. P. Dugos. 2015. Ignition and combustion characteristics of various biodiesel fuels (BDFs). Fuel 158:279–87. doi:10.1016/j.fuel.2015.05.049.
  • Petersen, B. R., I. W. Ekoto, and P. C. Miles. 2010. An investigation into the effects of fuel properties and engine load on UHC and CO emissions from a light-duty optical diesel engine operating in a partially premixed combustion regime. SAE Int. J. Engines 3:38–55.
  • Petersen, E. L., D. M. Kalitan, S. Simmons, G. Bourque, H. J. Curran, and J. M. Simmie 2007. Methane/propane oxidation at high pressures: Experimental and detailed chemical kinetic modeling. Proceedings of the combustion institute, United Kingdom, 31, 447–54.
  • Pfahl, U., K. Fieweger, and G. Adomeit 1996. Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions. Symposium (International) on combustion. Elsevier, United Kingdom, 781–89.
  • Pradhan, P., S. M. Mahajani, and A. Arora. 2018. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 181:215–32.
  • Qu, L., Z. Wang, and J. Zhang. 2016. Influence of waste cooking oil biodiesel on oxidation reactivity and nanostructure of particulate matter from diesel engine. Fuel 181:389–95.
  • Ranzi, E., M. Dente, A. Goldaniga, G. Bozzano, and T. Faravelli. 2001. Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Prog. Energy Combust. Sci. 27:99–139.
  • Rao, G. L. N., S. Sampath, and K. Rajagopal. 2008. Experimental studies on the combustion and emission characteristics of a diesel engine fuelled with used cooking oil methyl ester and its diesel blends. Int. J. Eng. Appl. Sci. 4:64–70.
  • Ryan, T. W., and T. J. Callahan 1996. Homogeneous charge compression ignition of diesel fuel. SAE Technical Paper.
  • Saravanan, S., G. Nagarajan, S. Anand, and S. Sampath. 2012. Correlation for thermal NOx formation in compression ignition (CI) engine fuelled with diesel and biodiesel. Energy 42:401–10.
  • Sarno, M., and M. Iuliano. 2019. Biodiesel production from waste cooking oil. Green Process. Synth. 8:828–36.
  • Singh, D., D. Sharma, S. Soni, S. Sharma, P. K. Sharma, and A. Jhalani. 2020. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 262:116553.
  • Sipra, A. T., N. Gao, and H. Sarwar. 2018. Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts. Fuel Process. Technol. 175:131–47.
  • Srivatsa, C., J. Mattson, and C. Depcik 2018. Investigating pre-mixed charge compression ignition combustion in a high compression ratio engine. SAE Technical Paper.
  • Srivatsa, C. V., J. Mattson, and C. Depcik. 2019. Performance and emission analysis of partially premixed charge compression ignition combustion. J. Eng. Gas Turbines Power 141:061004.
  • Srivatsa, C. V. C. 2017. Performance and emissions analysis of pre-mixed and partially pre-mixed charge compression ignition combustion. Lawrence, Kansas, USA: University of Kansas.
  • Su, J., H. Zhu, and S. V. Bohac. 2013. Particulate matter emission comparison from conventional and premixed low temperature combustion with diesel, biodiesel and biodiesel–ethanol fuels. Fuel 113:221–27.
  • Tanzer, S. E., J. Posada, S. Geraedts, and A. Ramirez. 2019. Lignocellulosic marine biofuel: Technoeconomic and environmental assessment for production in Brazil and Sweden. J. Clean. Prod. 239:117845.
  • Tompkins, B. T., H. Song, and T. J. Jacobs. 2014. Low temperature heat release of palm and soy biodiesel in late injection low temperature combustion. SAE Int. J. Fuels Lubr. 7:106–15.
  • Vandersickel, A., M. Hartmann, K. Vogel, Y. M. Wright, M. Fikri, R. Starke, C. Schulz, and K. Boulouchos. 2012. The autoignition of practical fuels at HCCI conditions: High-pressure shock tube experiments and phenomenological modeling. Fuel 93:492–501.
  • Veltman, M. K., P. K. Karra, and S.-C. Kong 2009. Effects of biodiesel blends on emissions in low temperature diesel combustion. SAE Technical Paper.
  • Voegele, E. 2020. USDA maintains forecast for 2020-‘21 soybean oil use in biodiesel [Online]. Biodiesel Magazine. Accessed July 7, 2021 http://www.biodieselmagazine.com/articles/2517148/usda-maintains-forecast-for-2020-undefined21-soybean-oil-use-in-biodiesel
  • Wang, W., and M. A. Oehlschlaeger. 2012. A shock tube study of methyl decanoate autoignition at elevated pressures. Combust. Flame 159:476–81.
  • Weall, A., and N. Collings. 2007. Highly homogeneous compression ignition in a direct injection diesel engine fuelled with diesel and biodiesel. SAE Trans. 116:646–60.
  • Ye, P., and A. L. Boehman. 2010. Investigation of the impact of engine injection strategy on the biodiesel NOx effect with a common-rail turbocharged direct injection diesel engine. Energy Fuels 24:4215–25.
  • Zhan, Y., K. H. Tan, G. JI, and M.-L. TSENG. 2018. Sustainable Chinese manufacturing competitiveness in the 21st century: Green and lean practices, pressure and performance. Int. J. Computer Integr. Manuf. 31:523–36.
  • Zheng, M., M. C. Mulenga, G. T. Reader, M. Wang, and D. S. Ting 2006. Influence of biodiesel fuel on diesel engine performance and emissions in low temperature combustion. SAE Technical Paper.
  • Zheng, M., M. C. Mulenga, G. T. Reader, M. Wang, D. S. Ting, and J. Tjong. 2008b. Biodiesel engine performance and emissions in low temperature combustion. Fuel 87:714–22.
  • Zheng, M., X. Han, Y. Tan, M. S. Kobler, S.-J. Ko, M. Wang, M. C. Mulenga, and J. Tjong 2008a. Low temperature combustion of neat biodiesel fuel on a common-rail diesel engine. SAE technical paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.