686
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of spatial distribution of CO2 dilution on localised forced ignition of stoichiometric biogas-air mixtures

, , & ORCID Icon
Pages 793-819 | Received 22 Jan 2021, Accepted 30 Aug 2021, Published online: 27 Sep 2021

References

  • Aspden, A. J. 2017. A numerical study of diffusive effects in turbulent lean premixed hydrogen flames. Proc. Combust. Inst. 36 (2):1997–2004. doi:10.1016/j.proci.2016.07.053.
  • Bachelor, G. K., and A. A. Townsend. 1948. Decay of turbulence in final period. Proc. R.Soc. Lond. A194:527–43.
  • Ballal, D. R., and A. H. Lefebvre. 1975. The influence of flow parameters on minimum ignition energy and quenching distances. Proc. Combust. Inst. 15 (1):1473–81. doi:10.1016/S0082-0784(75)80405-X.
  • Ballal, D. R., and A. H. Lefebvre. 1977. Spark ignition of turbulent flowing gases, 129–55. Reston, VA: 15th Aerospace Sciences Meeting, 155, American Institute of Aeronautics and Astronautics.
  • Bansal, G., and H. G. Im. 2011. Autoignition and front propagation in low temperature combustion environments. Combust. Flame 158 (11):2105–12. doi:10.1016/j.combustflame.2011.03.019.
  • Barik, D., and S. Murugan. 2014. Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas diesel in dual fuel mode. Energy 72:760–71. doi:10.1016/j.energy.2014.05.106.
  • Bibrzycki, J., and T. Poinsot, 2010, Reduced chemical kinetic mechanisms for methane combustion in O2/N2 and O2/CO2 atmosphere, Work. note ECCOMET WN/CFD/10/17, CERFACS.
  • Bilger, R. 1980. Turbulent flows with nonpremixed reactants. In Turbulent Reacting Flows, ed. P. Libby and F. Williams., Vol. 44 of Topics in Applied Physics, 65–113. Berlin/Heidelberg: Springer.
  • Boree, J., and P. C. Miles. 2014. Cylinder Flow, Encyclopedia of Automotive Engineering. London, UK: John Wiley & Sons. doi:10.1002/9781118354179.
  • Cardin, C., B. Renou, G. Cabot, and A. M. Boukhalfa. 2013a. Experimental analysis of laserinduced spark ignition of lean turbulent premixed flames: New insight into ignition transition. Combust. Flame 160 (8):1414–27. doi:10.1016/j.combustflame.2013.02.026.
  • Cardin, C., B. Renou, G. Cabot, and A. M. Boukhalfa. 2013b. Experimental analysis of laserinduced spark ignition of lean turbulent premixed flames. Comptes Rendus Mécanique 341 (1–2):191–200. doi:10.1016/j.crme.2012.10.019.
  • Chakraborty, N., R. S. Cant, and E. Mastorakos. 2007. Effects of turbulence on spark ignition in inhomogeneous mixtures: A Direct Numerical Simulation (DNS) study. Combust. Sci. Technol. 179:293–317.
  • Chakraborty, N., H. Hesse, and E. Mastorakos. 2010. Effects on fuel Lewis number on localised forced ignition of turbulent mixing layers. Flow Turb. Combust 84:125–66.
  • Chakraborty, N., and E. Mastorakos. 2006. Numerical Investigation of edge flame propagation characteristics in turbulent mixing layers. Phys. Fluids 18 (10):105103. doi:10.1063/1.2357972.
  • Chakraborty, N., and E. Mastorakos. 2008. Direct Numerical Simulation of localised forced ignition of turbulent mixing layers: The effects of mixture fraction and its gradient. Flow Turb. Combust. 80:155–86.
  • Champion, M., B. Deshaies, G. Joulin, and K. Kinoshita. 1986. Spherical flame initiation: Theory versus experiments for lean propane air mixtures. Combustion and Flame 65 (3):319–37. doi:10.1016/0010-2180(86)90045-3.
  • Chen, J. H., A. Choudhary, D. De Supinski, E. R. Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorski, R. Sankaran, et al. 2009. Terascale direct numerical simulations of turbulent combustion using S3D. Comput Sci. Discovery 2 (1):015001.
  • Chung, S. H. 2007. Stabilization, propagation and instability of tribrachial triple flames. Proc. Combust. Inst. 31 (1):877–92. doi:10.1016/j.proci.2006.08.117.
  • Crookes, R. J. 2006. Comparative bio-fuel performance in internal combustion engines. Biomass Bioenergy 30 (5):461–68. doi:10.1016/j.biombioe.2005.11.022.
  • Echekki, T., and J. H. Chen. 1998. Structure and propagation of methanol-air Triple flames. Combust. Flame 114 (1–2):23–245. doi:10.1016/S0010-2180(97)00287-3.
  • Espí, C. V., and A. Liñán. 2001. Fast, non-diffusive ignition of a gaseous reacting mixture subject to a point energy source. Combust. Theory Model. 5 (3):485–98. doi:10.1088/1364-7830/5/3/313.
  • Espí, C. V., and A. Liñán. 2002. Thermal-diffusive ignition and flame initiation by a local energy source. Combust. Theory Model. 6 (2):297–315. doi:10.1088/1364-7830/6/2/309.
  • Eswaran, V., and S. B. Pope. 1988. Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31:506–20.
  • EU and Bluesky, 2018, Robust kit to convert diesel vehicles to natural gas and biogas for extended life and reduced contaminants emission, https://trimis.ec.europa.eu/entityprint/node/18812.
  • Forsich, C., M. Lackner, F. Winter, H. Kopecek, and E. Wintner. 2004. Characterization of laser-induced ignition of biogas-air mixtures. Biomass Bioenergy 27 (3):299–312. doi:10.1016/j.biombioe.2004.02.002.
  • Galmiche, B., F. Halter, F. Foucher, and P. G. Dagaut. 2011. Effects of dilution on laminar burning velocity of premixed methane/air flames. Energy Fuels 25 (3):948–54. doi:10.1021/ef101482d.
  • Hawkes, E. R., R. Sankaran, P. Pebay, and J. H. Chen. 2006. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: II. Parametric study. Combustion and Flame 145 (1–2):145–59. doi:10.1016/j.combustflame.2005.09.018.
  • He, L. 2000. Critical conditions for spherical flame initiation in mixtures with high Lewis numbers. Combust. Theory Model. 4 (2):159–72. doi:10.1088/1364-7830/4/2/305.
  • Heeger, C., B. Bohm, S. F. Ahmed, R. Gordon, I. Boxx, W. Meier, A. Dreizler, and E. Mastorakos. 2009. Statistics of relative and absolute velocities of turbulent non-premixed edge flames following spark ignition. Proc. Combust. Inst. 32 (2):2957–64. doi:10.1016/j.proci.2008.07.006.
  • Hesse, H., N. Chakraborty, and E. Mastorakos. 2009. The effects of the Lewis number of the fuel on the displacement speed of edge flames in igniting turbulent mixing layers. Proc. Combust. Inst. 32 (1):1399–407. doi:10.1016/j.proci.2008.06.065.
  • Hesse, H., S. P. Malkeson, and N. Chakraborty. 2012. Displacement speed statistics for stratified mixture combustion in an igniting turbulent planar jet. J. Eng. Gas Turbines Power 134 (5):051502. doi:10.1115/1.4005214.
  • Im, H. G., and J. H. Chen. 1999. Structure and propagation of triple flames in partially premixed hydrogen-air mixtures. Combust. Flame 119 (4):436–54. doi:10.1016/S0010-2180(99)00073-5.
  • Im, H. G., and J. H. Chen. 2001. Effects of flow strain on triple flame propagation. Combust. Flame 126 (1–2):1384–92. doi:10.1016/S0010-2180(01)00261-9.
  • Im, H. G., J. H. Chen, and C. K. Law. 1998. Ignition of hydrogen/air mixing layer in turbulent flows. Proc. Combust. Inst. 28 (1):1047–56. doi:10.1016/S0082-0784(98)80505-5.
  • IRENA. 2018. Biogas for road vehicles: Technology brief. Abu Dhabi: International Renewable Energy Agency.
  • Jatana, G. S., M. Himabindu, H. S. Thakur, and R. V. Ravikrishna. 2014. Strategies for high efficiency and stability in biogas-fuelled small engines. Exper Thermal Fluid Sci. 54:189–95. doi:10.1016/j.expthermflusci.2013.12.008.
  • Karami, S., E. R. Hawkes, M. Talei, and J. H. Chen. 2015. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame. J. Fluid Mech. 777:633–89. doi:10.1017/jfm.2015.334.
  • Karami, S., E. R. Hawkes, M. Talei, and J. H. Chen. 2016. Edge flame structure in a turbulent lifted flame: A direct numerical simulation study. Combust. Flame 169:110–28. doi:10.1016/j.combustflame.2016.03.006.
  • Ko, Y. S., and S. H. Chung. 1999. Propagation of unsteady tribrachial flames in laminar non-premixed jets. Combust. Flame 118 (1–2):151–63. doi:10.1016/S0010-2180(98)00154-0.
  • Koonaphapdeelert, S., P. Aggarangsi, and J. Moran. 2020. Biomethane. In Production and Applications Green Energy and Technology. Singapore: Springer.
  • Korberg, A. D., I. R. Skov, and B. V. Mathiesen. 2020. The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark. Energy 199:117426. doi:10.1016/j.energy.2020.117426.
  • Lafay, Y., B. Taupin, G. Martins, G. Cabot, B. Renou, and A. Boukhalfa. 2007. Experimental study of biogas combustion using a gas turbine configuration, Exp. Fluids 43 (2–3):395–410.
  • Larsson, A., A. Berg, and A. Bonaldo. 2013. Fuel flexibility at ignition conditions for industrial gas turbines. Proc. ASME Turbo Expo GT2013–95536.
  • Lieuwen, T., V. McDonell, E. Petersen, and D. Santavicca. 2008. Fuel flexibility influences on premixed combustor blowout, flashback autoignition, and stability. J. Eng. Gas Turbines Power 130 (1):810. doi:10.1115/1.2771243.
  • Mastorakos, E. 2009. Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35 (1):57–97.
  • Mastorakos, E., T. A. Baritaud, and T. J. Poinsot. 1997. Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109 (1–2):198–223. doi:10.1016/S0010-2180(96)00149-6.
  • Mordaunt, C. J., and W. C. Pierce. 2014. Design and preliminary results of an atmospheric pressure model gas turbine combustor utilizing varying CO2 doping concentration in CH4 to emulate biogas combustion. Fuel 124:258–68. doi:10.1016/j.fuel.2014.01.097.
  • Mulla, I. A., S. R. Chakravarthy, N. Swaminathan, and R. Balachandran. 2016. Evolution of flame-kernel in in laser-induced spark ignited mixtures: A parametric study. Combust. Flame 164:303–18. doi:10.1016/j.combustflame.2015.11.029.
  • Mustafi, N. N., and A. K. Agarwal. 2020. Biogas for transport sector: current status, barriers, and path forward for large-scale adaptation. In Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines, Energy, Environment, and Sustainability, ed. A. Singh, Y. Sharma, N. Mustafi, and A. Agarwal. Singapore: Springer.
  • Neophytou, A., E. Mastorakos, and R. S. Cant. 2010. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame 157 (6):1071–86. doi:10.1016/j.combustflame.2010.01.019.
  • Papacz, W. 2011. Biogas as vehicle fuel. J. KONES Powertrain Transport 18:403–10.
  • Papapostolou, V., C. Turquand d’Auzay, and N. Chakraborty. 2020. A numerical investigation of the effects of fuel composition on the minimum ignition energy for homogeneous biogas-air mixtures. Flow Turb. Combust. doi:10.1007/s10494-020-00229-8.
  • Papapostolou, V. S., C. Turquand d’ Auzay, G. Ozel-Erol, and N. Chakraborty. 2019. Edge flame propagation statistics in igniting mono-disperse droplet-laden mixtures. Phys. Fluids 31 (10):105108. doi:10.1063/1.5113576.
  • Patel, D., and N. Chakraborty. 2014. Localised forced ignition of globally stoichiometric stratified mixtures: A numerical investigation. Combust. Theor. Model. 18 (6):627–51. doi:10.1080/13647830.2014.959456.
  • Patel, D., and N. Chakraborty. 2015. Effects of energy deposition characteristics on localised forced ignition of homogeneous mixtures, Int. J. Spray Combust. Dyn. 7 (2):151–74. doi:10.1260/1756-8277.7.2.151.
  • Patel, D., and N. Chakraborty. 2016a. Effects of fuel Lewis number on localised forced ignition of globally stoichiometric stratified mixtures: A numerical investigation. Flow Turb. Combust. 96:1083–105.
  • Patel, D., and N. Chakraborty. 2016b. Effects of fuel Lewis number and the energy deposition characteristics on localized forced ignition of homogeneous mixture: A numerical investigation. Int. J. Spray Combust. Dyn. 8 (3):183–96. doi:10.1177/1756827716651579.
  • Patel, D., and N. Chakraborty. 2016c. Effects of mixture distribution on localised forced ignition of stratified mixtures: A numerical investigation. Combust. Sci. Technol. 188:1904–24.
  • Patterson, T., S. Esteves, R. Dinsdale, and A. Guwy. 2011. An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy 39:1806–16.
  • Pera, C., S. Chevillard, and J. Reveillon. 2013. Effect of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame 160 (6):1020–32. doi:10.1016/j.combustflame.2013.01.009.
  • Persson, M. 2007. Biogas upgrading and utilization as vehicle fuel. Proc.Future Biogas Eur III:60–66.
  • Poinsot, T., T. Echekki, and M. Mungal. 1992. A study of the laminar flame tip and implications for turbulent premixed combustion. Combust. Sci. Technol. 81 (1–3):45–73. doi:10.1080/00102209208951793.
  • Rafiee, A., K. R. Khalilpour, J. Prest, and I. Skryabin. 2021. Biogas as an energy vector. Biomass Bioenergy 144:105935. doi:10.1016/j.biombioe.2020.105935.
  • Rasi, S., A. Veijanen, and J. Rintala. 2007. Trace compounds of biogas from different biogas production plants. Energy 32 (8):1375–80. doi:10.1016/j.energy.2006.10.018.
  • Ray, J., H. N. Najm, and R. B. McCoy, 2001, Ignition front structure in a methane air jet. Presented at the 2nd Joint Meeting of the U.S. Section of the Combustion Institute, Oakland, California, paper no. 150.
  • Rogallo, R. S., 1981, Numerical experiments in homogeneous turbulence. Technical report, NASA Ames, California, USA.
  • Ryckebosch, E., M. Drouillon, and H. Vervaeren. 2011. Techniues for transformation of biogas to biomethane. Biomass Bioenergy 35 (5):1633–45. doi:10.1016/j.biombioe.2011.02.033.
  • Sankaran, R., H. G. Im, E. R. Hawkes, and J. H. Chen. 2005. The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen–air mixture, Proc. Combust. Inst. 30 (1):875–82. doi:10.1016/j.proci.2004.08.176.
  • Selle, L., G. Lartigue, T. Poinsot, R. Koch, K. U. Schildmacher, W. Krebs, B. Prade, P. Kaufmann, and D. Veynante. 2004. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137 (4):489–505. doi:10.1016/j.combustflame.2004.03.008.
  • Shah, M. S., P. K. Halder, A. S. M. Shamsuzzaman, M. S. Hossain, S. K. Pal, and E. Sarker. 2017. Perspectives of biogas conversion into Bio-CNG for automobile fuel in Bangladesh. J. Renew. Energy 2017:4385295. doi:10.1155/2017/4385295.
  • Sibulkin, M., and K. S. Siskind. 1987. Numerical study of initiation of a combustion wave by an ignition kernel. Combust. Flame 69 (1):49–57. doi:10.1016/0010-2180(87)90020-4.
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, et al., 1995, GRI-MECH 3.0. http://www.me.berkeley.edu/grimech/.
  • Smooke, M. D., and V. Giovangigli. 1991. Premixed and nonpremixed test flame results. In Reduced kinetic mechanisms and asymptotic approximations for methane-air flames, 29–47. Berlin: Springer.
  • Surataa, I. W., T. G. T. Nindhiab, I. K. A. Atmikac, D. N. K. P. Negarad, and I. W. E. P. Putrae. 2014. Simple conversion method from gasoline to biogas fueled small engine to powered electric generator. Energy Proc. 52:626–32.
  • Turquand d’Auzay, C., V. Papapostolou, S. F. Ahmed, and N. Chakraborty. 2019a. Effects of turbulence intensity and biogas composition on the localised forced ignition of turbulent mixing layers. Combust. Sci. Technol. 191:868–97.
  • Turquand d’Auzay, C., V. Papapostolou, S. F. Ahmed, and N. Chakraborty. 2019b. On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures. Combust. Flame 201:104–17. doi:10.1016/j.combustflame.2018.12.015.
  • Turquand d’Auzay, C., V. S. Papapostolou, and N. Chakraborty. 2021. Effects of biogas composition on the edge flamepropagation in igniting turbulent mixing layers”. Flow Turb. Combust. 106 (4):1437–59. doi:10.1007/s10494-020-00210-5.
  • Vasavan, A., P. De Goey, and J. van Oijen. 2018. Numerical study on the autoignition of biogas in moderate or intense low oxygen dilution nonpremixed combustion systems. Energy Fuels 32 (8):8768–80. doi:10.1021/acs.energyfuels.8b01388.
  • Wandel, A. P., N. Chakraborty, and E. Mastorakos. 2009. Direct numerical simulations of turbulent flame expansion in fine sprays. Proc. Combust. Inst. 32 (2):2283–90. doi:10.1016/j.proci.2008.06.102.
  • Westbrook, C. K., and F. L. Dryer. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27 (1–2):31–43. doi:10.1080/00102208108946970.
  • Yu, R., and X.-S. Bai. 2010. Direct Numerical Simulation of lean hydrogen/air auto-ignition in a constant volume enclosure. Combust. Flame 157:1071–86.