284
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Production of Liquid Fuel from Polystyrene Waste: Process Optimization and Characterization of Pyrolyzates

, ORCID Icon, , , , & show all
Pages 1124-1137 | Received 15 Nov 2020, Accepted 22 Sep 2021, Published online: 07 Oct 2021

References

  • Abdullah, M., and K. Khairurrijal. 2009. Derivation of Scherrer relation using an approach in basic physics course. J. Nano. Nanotek. 1:28–32.
  • Aboulkas, A. 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Conver. Manag. 51 (7):1363–69. doi:10.1016/j.enconman.2009.12.017.
  • Ali, S., A. Garforth, D. Harris, D. Rawlence, and Y. Uemichi. 2002. Polymer waste recycling over “used” catalysts. Catal. Today 75 (1–4):247–55. doi:10.1016/S0920-5861(02)00076-7.
  • Aljabri, N. M., Z. Lai, N. Hadjichristidis, and K.-W. Huang. 2017. Renewable aromatics from the degradation of polystyrene under mild conditions. J. Saudi Chem. Soci. 21 (8):983–89. doi:10.1016/j.jscs.2017.05.005.
  • ASTM. 1979. Annual book of ASTM standard part 23. Philadelphia, PA: American Society of Testing Materials.
  • Bharadwaj, A. S., S. Niju, K. Meera Sheriffa Begum, and A. Narayanan. 2020. Performance and evaluation of calcined limestone as catalyst in biodiesel production from high viscous nonedible oil. Environ. Prog. Sustain. Energy 39 (3):e13342. doi:10.1002/ep.13342.
  • Bosica, G., R. Abdilla, and K. Demanuele. 2018. Revisiting the Betti synthesis: Using a cheap, readily available, recyclable clay catalyst under solventless conditions. Europ. J. Organ. Chem. 2018 (44):6127–33. doi:10.1002/ejoc.201800826.
  • Cho, K.-H., D.-R. Cho, K.-H. Kim, and D.-W. Park. 2007. Catalytic degradation of polystyrene using albite and montmorillonite. Korean J. Chem. Engin. 24 (2):223–25. doi:10.1007/s11814-007-5048-6.
  • Feng, J., X. Hu, and P. L. Yue. 2004. Novel bentonite clay-based Fe− nanocomposite as a heterogeneous catalyst for photo-fenton discoloration and mineralization of Orange II. Environ.Sci.Technol. 38 (1):269–75. doi:10.1021/es034515c.
  • Filip, M., A. Pop, I. Perhaiţa, M. Moldovan, and R. Truşcă. 2013. Investigation of thermal and catalytic degradation of polystyrene waste into styrene monomer over natural volcanic tuff and Florisil catalysts. Open Chem. 11 (5):725–35. doi:10.2478/s11532-013-0202-y.
  • Fuentes-Ordóñez, E. G., J. A. Salbidegoitia, M. P. González-Marcos, and J. R. González-Velasco. 2016. Mechanism and kinetics in catalytic hydrocracking of polystyrene in solution. Polym.Degrad.Stab. 124:51–59. doi:10.1016/j.polymdegradstab.2015.12.009.
  • Gautam, S. K., B. Sapkota, A. Bhujel, and S. Bhattarai. 2020. Estimation of particle size and band gap of zinc oxide nanoparticle synthesized by chemical precipitation method. J. Nepal Chem. Soci. 41 (1):46–50. doi:10.3126/jncs.v41i1.30448.
  • Houben, M., G. Desbois, and J. Urai. 2014. A comparative study of representative 2D microstructures in shaly and sandy facies of Opalinus clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods. Marin. Petrol. Geo. 49:143–61. doi:10.1016/j.marpetgeo.2013.10.009.
  • Huang, W.-C., M.-S. Huang, C.-F. Huang, -C.-C. Chen, and K.-L. Ou. 2010. Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts. Fuel 89 (9):2305–16. doi:10.1016/j.fuel.2010.04.013.
  • IP. 1993. Standards for petroleum and its products, part I. London: Institute of Petroleum.
  • Khan, M. A., J. Nisar, M. Iqbal, A. Shah, R. A. Khan, and I. A. Bhatti. 2019. Pyrolysis of polypropylene over a LZ-Y52 molecular sieve: Kinetics and the product distribution. Iran. Polym. J. 28 (10):839–47. doi:10.1007/s13726-019-00747-x.
  • Kim, J.-R., J.-H. Yoon, and D.-W. Park. 2002. Catalytic recycling of the mixture of polypropylene and polystyrene. Polym.Degrad.Stab. 76 (1):61–67. doi:10.1016/S0141-3910(01)00266-X.
  • Kim, J.-S., W.-Y. Lee, S.-B. Lee, S.-B. Kim, and M.-J. Choi. 2003. Degradation of polystyrene waste over base promoted Fe catalysts. Catal. Today 87 (1–4):59–68. doi:10.1016/j.cattod.2003.10.004.
  • Lee, K.-H., N.-S. Noh, D.-H. Shin, and Y. Seo. 2002. Comparison of plastic types for catalytic degradation of waste plastics into liquid product with spent FCC catalyst. Polym.Degrad.Stab. 78 (3):539–44. doi:10.1016/S0141-3910(02)00227-6.
  • Lee, S., J. Yoon, J. Kim, and D. Park. 2001. Catalytic degradation of polystyrene over natural clinoptilolite zeolite. Polym.Degrad.Stab. 74 (2):297–305. doi:10.1016/S0141-3910(01)00162-8.
  • Liu, M., J. K. Zhuo, S. J. Xiong, and Q. Yao. 2014. Catalytic degradation of high-density polyethylene over a clay catalyst compared with other catalysts. Energy Fuels 28 (9):6038–45. doi:10.1021/ef501326k.
  • Liu, Y., J. Qian, and J. Wang. 2000. Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Processing Technology 63 (1):45–55. doi:10.1016/S0378-3820(99)00066-1.
  • López, A., I. De Marco, B. Caballero, M. Laresgoiti, A. Adrados, and A. Aranzabal. 2011. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Appl. Catal. B: Environ. 104 (3–4):211–19. doi:10.1016/j.apcatb.2011.03.030.
  • Luo, G., T. Suto, S. Yasu, and K. Kato. 2000. Catalytic degradation of high density polyethylene and polypropylene into liquid fuel in a powder-particle fluidized bed. Polym.Degrad.Stab. 70 (1):97–102. doi:10.1016/S0141-3910(00)00095-1.
  • Ma, C., J. Yu, B. Wang, Z. Song, J. Xiang, S. Hu, S. Su, and L. Sun. 2017. Catalytic pyrolysis of flame retarded high impact polystyrene over various solid acid catalysts. Fuel Proces. Technol. 155:32–41. doi:10.1016/j.fuproc.2016.01.018.
  • Miandad, R., M. Barakat, A. S. Aburiazaiza, M. Rehan, I. Ismail, and A. Nizami. 2017. Effect of plastic waste types on pyrolysis liquid oil. Int. Biodeterio., Biodegrad. 119:239–52. doi:10.1016/j.ibiod.2016.09.017.
  • Miskolczi, N., L. Bartha, and G. Deák. 2006. Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feed stocks. Polym.Degrad.Stab. 91 (3):517–26. doi:10.1016/j.polymdegradstab.2005.01.056.
  • Murata, K., Y. Hirano, Y. Sakata, and M. A. Uddin. 2002. Basic study on a continuous flow reactor for thermal degradation of polymers. J. Anal. Appl. Pyrol. 65 (1):71–90. doi:10.1016/S0165-2370(01)00181-4.
  • Nisar, J., G. Ali, A. Shah, M. Iqbal, R. A. Khan, F. Anwar, R. Ullah, and M. S. Akhter. 2019a. Fuel production from waste polystyrene via pyrolysis: Kinetics and products distribution. Waste Manag. 88:236–47.
  • Nisar, J., G. Ali, A. Shah, M. R. Shah, M. Iqbal, M. N. Ashiq, and H. N. Bhatti. 2019b. Pyrolysis of expanded waste polystyrene: Influence of nickel-doped copper oxide on kinetics, thermodynamics, and product distribution. Energy Fuels 33 (12):12666–78. doi:10.1021/acs.energyfuels.9b03004.
  • Nisar, J., M. A. Khan, G. Ali, M. Iqbal, A. Shah, M. R. Shah, S. T. H. Sherazi, L. A. Shah, and N. U. Rehman. 2019c. Pyrolysis of polypropylene over zeolite mordenite ammonium: Kinetics and products distribution. J. Polym. Engin. 39 (9):785–93. doi:10.1515/polyeng-2019-0077.
  • Nisar, J., M. S. Khan, G. Ali, A. Shah, R. A. Khan, F. Shah, Sirajuddin, S. T. H. Sherazi, and M. Iqbal. 2019d. Pyrolysis of polystyrene: The influence of commercially available oxides as catalysts. J, Chem. Soci. Pak. 41:779–87.
  • Njopwouo, D., G. Roques, and R. Wandji. 1987. A contribution to the study of the catalytic action of clays on the polymerization of styrene: I. Characterization of Polystyrenes. Clay Miner 22:45.
  • Ojha, D. K., and R. Vinu. 2015. Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. J. Anal. Appl. Pyrol. 113:349–59. doi:10.1016/j.jaap.2015.02.024.
  • Olutoye, M., and B. Hameed. 2013. A highly active clay-based catalyst for the synthesis of fatty acid methyl ester from waste cooking palm oil. Appl Catal. A: General 450:57–62. doi:10.1016/j.apcata.2012.09.049.
  • Onwudili, J. A., N. Insura, and P. T. Williams. 2009. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. J. Anal. Appl. Pyrol. 86 (2):293–303. doi:10.1016/j.jaap.2009.07.008.
  • Pinto, F., P. Costa, I. Gulyurtlu, and I. Cabrita. 1999. Pyrolysis of plastic wastes: 2. Effect of catalyst on product yield. J. Anal. Appl. Pyrol. 51 (1–2):57–71. doi:10.1016/S0165-2370(99)00008-X.
  • Qoniah, I., D. Prasetyoko, H. Bahruji, S. Triwahyono, A. A. Jalil, and T. E. Purbaningtias. 2015. Direct synthesis of mesoporous aluminosilicates from Indonesian kaolin clay without calcination. Appl. Clay Sci. 118:290–94. doi:10.1016/j.clay.2015.10.007.
  • Senneca, O., R. Chirone, and P. Salatino. 2002. A thermogravimetric study of nonfossil solid fuels. 2. Oxidative pyrolysis and char combustion. Energy Fuels 16 (3):661–68. doi:10.1021/ef0102061.
  • Serrano, D., and J. Aguado. 2000. Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2–Al2O3: Comparison with thermal cracking. Appl. Catal. B: Environ. 25 (2–3):181–89. doi:10.1016/S0926-3373(99)00130-7.
  • Simić, V., and P. Uhlík. 2006. Crystallite size distribution of clay minerals from selected Serbian clay deposits. In Geoloski balkanskoga poluostrva, 109–16.
  • Songip, A. R., T. Masuda, H. Kuwahara, and K. Hashimoto. 1994. Kinetic studies for catalytic cracking of heavy oil from waste plastics over REY zeolite. Energy Fuels 8 (1):131–35. doi:10.1021/ef00043a022.
  • Tae, J.-W., B.-S. Jang, J.-R. Kim, I. Kim, and D.-W. Park. 2004. Catalytic degradation of polystyrene using acid-treated halloysite clays. Solid State Ionics 172 (1–4):129–33. doi:10.1016/j.ssi.2004.05.013.
  • Ukei, H., T. Hirose, S. Horikawa, Y. Takai, M. Taka, N. Azuma, and A. Ueno. 2000. Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts. Catal. Today 62 (1):67–75. doi:10.1016/S0920-5861(00)00409-0.
  • Villegas, R. A., E. Santo Jr, M. Mattos, M. R. de Aguiar, and A. W. Guarino. 2005. Characterization of natural Brazilian clays and their utilization as catalysts in the coiodination of alkenes with water and alcohols. J. Brazilian Chem. Soci 16 (3b):565–70. doi:10.1590/S0103-50532005000400012.
  • Walendziewski, J. 2005. Continuous flow cracking of waste plastics. Fuel Proces. Technol. 86 (12–13):1265–78. doi:10.1016/j.fuproc.2004.12.004.
  • Walendziewski, J., and M. Steininger. 2001. Thermal and catalytic conversion of waste polyolefines. Catal. Today 65 (2–4):323–30. doi:10.1016/S0920-5861(00)00568-X.
  • Yusuff, A. S., L. T. Popoola, and E. I. Aderibigbe. 2020. Solar photocatalytic degradation of organic pollutants in textile industry wastewater by ZnO/pumice composite photocatalyst. J. Environ. Chem. Engin. 8 (4):103907. doi:10.1016/j.jece.2020.103907.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.