247
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Explosion Hazard of AP/HTPB in Fire Condition

, , &
Pages 1169-1183 | Received 12 Aug 2021, Accepted 30 Sep 2021, Published online: 14 Oct 2021

References

  • Asante, D., S. Kim, J. Chae, H. Kim, and M. Oh. 2015. CFD Cook-Off Simulation and Thermal Decomposition of Confined High Energetic Material. Propellants, Explosives, Pyrotechnics 40 (5):699–705. doi:10.1002/prep.201400296.
  • Cai, W., P. Thakre, and V. Yang. 2008. A Model of AP/HTPB Composite Propellant Combustion in Rocket-Motor Environments. Combustion Science and Technology 180 (12):2143–69. doi:10.1080/00102200802414915.
  • Caro, R., and J. Bellerby. 2008. Behavior of hydroxyl-terminated polyether (HTPE) composite rocket propellants in slow cook-off. Int. J. Energetic Mater. Chem. Propulsion 7 (3):171–85. doi:10.1615/IntJEnergeticMaterialsChemProp.v7.i3.10.
  • Dennis, C., and B. Bojko. 2019. On the combustion of heterogeneous AP/HTPB composite propellants: A review. Fuel 254:115646. doi:10.1016/j.fuel.2019.115646.
  • Essel, J., A. Nelson, L. Smilowitz, B. Henson, L. Merriman, D. Turnbaugh, C. Gray, and K. Shermer. 2020. Investigating the effect of chemical ingredient modifications on the slow cook-off violence of ammonium perchlorate solid propellants on the laboratory scale. Journal of Energetic Materials 38 (2):127–41. doi:10.1080/07370652.2019.1672831.
  • Gross, M., T. Hedman, and K. Meredith. 2016. Considerations for Fast Cook-Off Simulations. Propellants, Explosives, Pyrotechnics 41 (6):1036–43. doi:10.1002/prep.201500253.
  • Gross, M., K. Meredith, and M. Beckstead. 2015. Fast cook-off modeling of HMX. Combustion and Flame 162 (9):3307–51. doi:10.1016/j.combustflame.2015.05.020.
  • Hobbs, M., and M. Kaneshige. 2019. Small-scale cook-off experiments and models of ammonium nitrate. Journal of Energetic Materials 37 (1):29–43. doi:10.1080/07370652.2018.1521480.
  • Hu, S., J. Chen, G. Wu, Q. Xu, H. Liu, and Y. Hua. 2014. Burning Behavior of Solid Propellants at High Pressure. Combustion Science and Technology 186 (12):1858–88. doi:10.1080/00102202.2014.923413.
  • Isik, H., and F. Goktas. 2017. Cook-off analysis of a propellant in a 7.62 mm barrel by experimental and numerical methods. Applied Thermal Engineering 112:484–96. doi:10.1016/j.applthermaleng.2016.10.104.
  • Jeppson, M., M. Beckstead, and Q. Jing. 1998. A kinetic model for the premixed combustion of a fine AP/HTPB composite propellant. AIAA J. doi:10.2514/6.1998-447
  • Kong, D., G. Wang, P. Ping, and J. Wen. 2021. Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions. Applied Thermal Engineering 189:116661. doi:10.1016/j.applthermaleng.2021.116661.
  • Kou, Y., L. Chen, J. Lu, D. Geng, W. Chen, and J. Wu. 2021. Assessing the thermal safety of solid propellant charges based on slow cook-off tests and numerical simulations. Combustion and Flame 228:154–62. doi:10.1016/j.combustflame.2021.01.043.
  • Li, W., Y. Yu, R. Ye, and H. Yang. 2017. Three-Dimensional Simulation of Base Bleed Unit with AP/HTPB Propellant in Fast Cook-off Conditions. Journal of Energetic Materials 35 (3):265–75. doi:10.1080/07370652.2016.1177138.
  • Ojha, M., A. Dhiman, and K. Guha. 2012. Simulation of thermally protected cylindrical container engulfed in fire. Journal of Loss Prevention in the Process Industries 25 (2):391–99. doi:10.1016/j.jlp.2011.10.001.
  • Planas-Cuchi, E., and J. Casal. 1998. Modeling temperature evolution in equipment engulfed in poor-fire. Fire Safety Journal 30 (3):251–68. doi:10.1016/S0379-7112(98)00053-8.
  • Sechmits, G., and B. Fabion. 1980. ODTX text program. Mason and Hanger-Silas  Mason  Co., Inc., Amarillo, TX (USA).
  • Selesovsky, J. 2010. Thermal loading of explosives—Finite difference method with time step reduction. Journal of Hazardous Materials 174 (1–3):289–94. doi:10.1016/j.jhazmat.2009.09.049.
  • Smyth, D. 2011. Modeling Solid Propellant Ignition Events. Theses and Dissertations: 3125. Brigham Young University.
  • Wang, G., Y. Wang, and Q. Wen. 2019. Thermal–mechanical analysis for confined HMX based polymer-bonded explosives. Journal of Thermal Stresses 42 (8):1011–34. doi:10.1080/01495739.2019.1607790.
  • Xue, X., Y. Yu, and R. Ye. 2018. Unsteady chemical kinetics behavior of AP/HTPB propellant with micro-scale model. Combustion Science and Technology 190 (12):2164–87. doi:10.1080/00102202.2018.1494594.
  • Yan, D., Z. Wei, K. Xie, and N. Wang. 2020. Simulation of thrust control by fluidic injection and pintle in a solid rocket motor. Aerospace Science and Technology 99:105711. doi:10.1016/j.ast.2020.105711.
  • Yang, H., Y. Yu, R. Ye, X. Xue, and W. Li. 2016. Cook-off test and numerical simulation of AP/HTPB composite solid propellant. Journal of Loss Prevention in the Process Industries 40:1–9. doi:10.1016/j.jlp.2015.11.028.
  • Yang, S., and W. Tao. 2006. Heat Transfer. 4th ed. Beijing: Higher Education Press.
  • Ye, Q., and Y. Yu. 2018. Numerical simulation of cook-off characteristics for AP/HTPB. Defence Technology 14 (5):451–56. doi:10.1016/j.dt.2018.06.013.
  • Ye, Q., and Y. Yu. 2020. Numerical analysis of cook-off behavior of cluster tubular double-based propellant. Applied Thermal Engineering 181:115972. doi:10.1016/j.applthermaleng.2020.115972.
  • Ye, Q., Y. Yu, and W. Li. 2020. Study on cook-off behavior of HTPE propellant in solid rocket motor. Applied Thermal Engineering 167:114798. doi:10.1016/j.applthermaleng.2019.114798.
  • Ye, R., Y. Yu, and Y. Cao. 2013. Analysis of Micro-scale Flame Structure of AP/HTPB Base Bleed Propellant Combustion. Defence Technology 9 (4):217–33. doi:10.1016/j.dt.2013.12.001.
  • Ye, R., Y. Yu, and Y. Cao. 2015. Experimental Study of Transient Combustion Characteristics of AP/HTPB Base Bleed Propellant Under Rapid Pressure Drop. Combustion Science and Technology 187 (3):445–57. doi:10.1080/00102202.2014.951121.
  • Ye, Z., and Y. Yu. 2019. Numerical Simulation and Unsteady Combustion Model of AP/HTPB Propellant under Depressurization by Rotation. Propellants, Explosives, Pyrotechnics 44 (4):493–504. doi:10.1002/prep.201800091.
  • Zhang, Z., S. Wu, L. Lu, and Y. Hu. 2021. Characteristics of the Fast/Slow Cook-off Experimental Methods for Ammunition Structures (In Chinese). Equipment Environ. Eng. 18:28–33.
  • Zhi, X., S. Hu, J. Li, S. Xu, and Y. Li. 2011. RDX-Based Booster Explosive Response Character Under Slow Cook-Off Conditions. Journal of Energetic Materials 29 (2):75–87. doi:10.1080/07370650903535515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.