138
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The Effect of the Ratio of the Secondary and Tertiary Air on the Outlet Velocity Field of the New Swirling Pulverized Coal Burner

, , , , , & show all
Pages 1221-1234 | Received 02 Aug 2021, Accepted 03 Oct 2021, Published online: 12 Oct 2021

References

  • Dai, B. Q., X. J. Wu, A. De Girolamo, J. Cashion, and L. Zhang. 2015a. Inhibition of lignite ash slagging and fouling upon the use of a silica-based additive in an industrial pulverised coal-fired boiler: Part 2. Speciation of iron in ash deposits and separation of magnetite and ferrite. Fuel 139:733–45. doi:10.1016/j.fuel.2014.06.075.
  • Dai, B. Q., X. J. Wu, A. De Girolamo, and L. Zhang. 2015b. Inhibition of lignite ash slagging and fouling upon the use of a silica-based additive in an industrial pulverised coal-fired boiler. Part 1. Changes on the properties of ash deposits along the furnace. Fuel 139:720–32. doi:10.1016/j.fuel.2014.06.054.
  • Fan, W. D., Z. C. Lin, Y. Y. Li, J. G. Kuang, and M. C. Zhang. 2009. Effect of air-staging on anthracite combustion and NOx formation. Energy Fuels 23 (1–2):111–20. doi:10.1021/ef800343j.
  • Gao, J. J., K. Wang, Y. L. Tong, T. Yue, C. L. Wang, P. L. Zuo, and J. Y. Liu. 2021. Refined spatio-temporal emission assessment of Hg, As, Cd, Cr and Pb from Chinese coal-fired industrial boilers. Sci. Total Environ. 757. doi:10.1016/j.scitotenv.2020.143733.
  • Han, Y. F., B. Shen, and T. Zhang. 2017. A techno-economic assessment of fuel switching options of addressing environmental challenges of coal-fired industrial boilers: An analytical work for China. Energy Procedia 142:3083–87. doi:10.1016/j.egypro.2017.12.448.
  • Jia, Y. F., W. G. Zhou, J. Y. Tang, and Y. Luo. 2020. Design optimization and CFD evaluation of a volute swirl burner with central gas supply. J. Braz. Soc. Mech. Sci. Eng. 42 (4):20. doi:10.1007/s40430-020-02288-4.
  • Jing, J., Z. Li, Q. Zhu, Z. Chen, and F. Ren. 2011. Influence of primary air ratio on flow and combustion characteristics and NOx emissions of a new swirl coal burner. Energy 36 (2):1206–13. doi:10.1016/j.energy.2010.11.025.
  • Kotb, A., and H. Saad. 2016. A comparison of the thermal and emission characteristics of co and counter swirl inverse diffusion flames. Int. J. Therm. Sci. 109:362–73. doi:10.1016/j.ijthermalsci.2016.06.015.
  • Kuang, M., Z. Q. Li, P. F. Yang, J. Z. Jia, and Q. Y. Zhu. 2011. Flow-field deflection characteristics within a cold small-scale model for a down-fired 300 MWe utility boiler at different secondary-air angles. Fuel Process. Technol. 92 (6):1261–71. doi:10.1016/j.fuproc.2011.02.014.
  • Laphirattanakul, P., J. Charoensuk, C. Turakarn, C. Kaewchompoo, and N. Suksam. 2020. Development of pulverized biomass combustor with a pre-combustion chamber. Energy 208:118333. doi:10.1016/j.energy.2020.118333.
  • Li, S., Z. C. Chen, X. G. Li, B. K. Jiang, Z. Q. Li, R. Sun, Q. Y. Zhu, and X. Q. Zhang. 2017. Effect of outer secondary-air vane angle on the flow and combustion characteristics and NOx formation of the swirl burner in a 300-MW low-volatile coal-fired boiler with deep air staging. J. Energy Inst. 90 (2):239–56. doi:10.1016/j.joei.2016.01.005.
  • Li, S., Z. Q. Li, B. K. Jiang, Z. C. Chen, and X. Q. Zhang. 2015. Effect of secondary air mass flow rate on the airflow and combustion characteristics and NOx formation of the low-volatile coal-fired swirl burner. Asia-Pac. J. Chem. Eng. 10 (6):858–75. doi:10.1002/apj.1923.
  • Li, Y., and W. D. Fan. 2016. Effect of char gasification on NOx formation process in the deep air-staged combustion in a 20 kW down flame furnace. Appl. Energy 164:258–67. doi:10.1016/j.apenergy.2015.11.048.
  • Li, Z. Q., J. P. Jing, Z. C. Chen, F. Ren, B. Xu, H. D. Wei, and Z. H. Ge. 2008. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler. Combust. Sci. Technol. 180 (7):1370–94. doi:10.1080/00102200802043318.
  • Li, Z. Q., J. P. Jing, Z. H. Ge, G. K. Liu, Z. C. Chen, and F. Ren. 2009. Numerical simulation of low NOx combustion technology in a 100 MWe bituminous coal-fired wall boiler. Numer. Heat Transfer, Part A 55 (6):574–93. doi:10.1080/10407780902821227.
  • Li, Z. Q., M. Kuang, Q. Y. Zhu, P. F. Yang, Y. G. Wu, and S. T. Xu. 2010. Staged-air ratio optimization within a cold small-scale model for a MBEL down-fired pulverized-coal 300 MW (electrical) utility boiler. Energy Fuels 24 (9):4883–92. doi:10.1021/ef1006879.
  • Liu, H., Y. H. Liu, G. Z. Yi, L. Nie, and D. F. Che. 2013. Effects of air staging conditions on the combustion and NOx emission characteristics in a 600 MW wall fired utility boiler using lean coal. Energy Fuels 27 (10):5831–40. doi:10.1021/ef401354g.
  • Liu, P. Z., F. Niu, X. W. Wang, F. Guo, W. Luo, and N. J. Wang. 2020a. Influence of the inner and outer secondary air ratios on the combustion characteristic and flame shape of a swirl burner with a prechamber. J. Chem. 2:1–9. doi:10.1155/2020/4363016.
  • Liu, X. M., Y. J. Ge, G. L. Qi, and S. S. Zhang, and Iop. 2019. Review of simulation research on pulverized coal combustion in industrial boilers. 2019 5th International Conference on Energy Materials and Environment Engineering. IOP Conference Series-Earth and Environmental Science, Yichang, China.
  • Liu, Z. W., S. J. Liu, R. C. Shi, J. Wang, M. Xie, and S. Zheng. 2020b. A control strategy of the air flow rate of coal-fired utility boilers based on the load demand. Acs Omega 5 (48):31199–208. doi:10.1021/acsomega.0c04585.
  • Pei, J. J., Z. Zhang, and C. F. You. 2019. Optimizing the combustion of low-quality coal by the wall wind auxiliary combustion method in a tangentially fired utility boiler. Combust. Sci. Technol. 191 (3):570–89. doi:10.1080/00102202.2018.1505879.
  • Ren, F., Z. Q. Li, Z. C. Chen, J. J. Wang, and Z. Chen. 2009. Influence of the down-draft secondary air on the furnace aerodynamic characteristics of a down-fired boiler. Energy Fuels 23 (5–6):2437–43. doi:10.1021/ef8010146.
  • Song, M. H., Q. Huang, F. Niu, and S. Q. Li. 2020. Recirculating structures and combustion characteristics in a reverse-jet swirl pulverized coal burner. Fuel 270:11. doi:10.1016/j.fuel.2020.117456.
  • Suksam, N., and J. Charoensuk. 2019. Development of pulverized biomass combustion for industrial boiler: A study on bluff body effect. Bioresources 14 (3):6146–67. doi:10.15376/biores.14.3.6146-6167.
  • Sun, G. G., D. F. Che, and Z. H. Chi. 2012. Effects of secondary air on flow, combustion, and NOx emission from a novel pulverized coal burner for industrial boilers. Energy Fuels 26 (11):6640–50. doi:10.1021/ef301043x.
  • Sung, Y., and G. Choi. 2015. Effectiveness between swirl intensity and air staging on NOx emissions and burnout characteristics in a pulverized coal fired furnace. Fuel Process. Technol. 139:15–24. doi:10.1016/j.fuproc.2015.07.026.
  • Sung, Y., and G. Choi. 2016. Non-intrusive optical diagnostics of co- and counter-swirling flames in a dual swirl pulverized coal combustion burner. Fuel 174:76–88. doi:10.1016/j.fuel.2016.01.011.
  • Weigand, P., W. Meier, X. R. Duan, W. Stricker, and M. Aigner. 2006. Investigations of swirl flames in a gas turbine model combustor - I. Flow field, structures, temperature, and species distributions. Combust. Flame 144 (1–2):205–24. doi:10.1016/j.combustflame.2005.07.010.
  • Xu, L., J. M. Gao, G. B. Zhao, L. F. Zhao, W. Zhao, Q. Du, Y. Zhang, S. H. Wu, and Y. K. Qin. 2017. Influence of oxidation-reduction layering on fuel nitrogen oxide emissions during a char grate-fired process. Energy Fuels 31 (9):9736–44. doi:10.1021/acs.energyfuels.7b01237.
  • Xu, Y., S. Q. Li, Q. Yao, and Y. Yuan. 2018. Investigation of steam effect on ignition of dispersed coal particles in O2/N2 and O2/CO2 ambiences. Fuel 233:388–95. doi:10.1016/j.fuel.2018.06.047.
  • Xue, S., S. Hui, Q. L. Zhou, and T. M. Xu. 2009. Experimental study on NOx emission and unburnt carbon of a radial biased swirl burner for coal combustion. Energy Fuels 23 (7):3558–64. doi:10.1021/ef900055s.
  • Yan, R., Z. C. Chen, S. Guan, and Z. Q. Li. 2021. Influence of mass air flow ratio on gas-particle flow characteristics of a swirl burner in a 29 MW pulverized coal boiler. Front. Energy 15 (1):68–77. doi:10.1007/s11708-020-0697-9.
  • Yang, J. C., R. Sun, S. Z. Sun, N. B. Zhao, N. Hao, H. Chen, Y. Wang, H. R. Guo, and J. Q. Meng. 2014. Experimental study on NOx reduction from staging combustion of high volatile pulverized coals. Part 1. Air staging. Fuel Process. Technol. 126:266–75. doi:10.1016/j.fuproc.2014.04.034.
  • Yang, J. C., R. Sun, S. Z. Sun, N. B. Zhao, N. Hao, H. Chen, Y. Wang, H. R. Guo, and J. Q. Meng. 2015. Experimental study on NOx reduction from staging combustion of high volatile pulverized coals. Part 2. Fuel staging. Fuel Process. Technol. 138:445–54. doi:10.1016/j.fuproc.2015.06.019.
  • Zhang, G. Q., W. L. Xu, X. Y. Wang, and Y. P. Yang. 2015. Analysis and optimization of a coal-fired power plant under a proposed flue gas recirculation mode. Energy Convers. Manage. 102:161–68. doi:10.1016/j.enconman.2015.01.073.
  • Zhang, X., Z. C. Chen, L. K. Li, L. Y. Zeng, and Z. Q. Li. 2021. Industrial-scale investigations on combustion characteristics and NO (x) emissions of a 300-MWe down-fired boiler: Bituminous coal combustion and coal varieties comparison. Combust. Sci. Technol. 20. doi:10.1080/00102202.2021.1912028.
  • Zhao, Y. J., G. Zeng, L. Y. Zhang, Y. J. Zhang, S. Z. Sun, and C. H. Wei. 2017. Effects of fuel properties on ignition characteristics of parallel-bias pulverized-coal jets. Energy Fuels 31 (11):12804–14. doi:10.1021/acs.energyfuels.7b02055.
  • Zhou, C. Y., Y. Q. Wang, Q. Y. Jin, Q. J. Chen, and Y. G. Zhou. 2019. Mechanism analysis on the pulverized coal combustion flame stability and NOx emission in a swirl burner with deep air staging. J. Energy Inst. 92 (2):298–310. doi:10.1016/j.joei.2018.01.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.