364
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Gliding Arc Discharge for Emission Control in Swirl Fuel-lean Non-premixed Combustion

, , &
Pages 1235-1250 | Received 22 Feb 2021, Accepted 05 Oct 2021, Published online: 19 Oct 2021

References

  • Ahn, T., D. H. Lee, and S. Park. 2019. Combustion of inert ‑ gas ‑ diluted volatile organic compounds using a fuel ‑ rich pilot flame and rotating arc plasma. Plasma Chem. Plasma Proc. 39 (123456789):423–44. doi:10.1007/s11090-019-09953-0.
  • Alves, A. 2013. Estudo experimental da Estabilização de Chamas em Escoamentos com Baixa Rotação para Aplicações em Turbinas a Gás. São José dos Campos, Brazil: Instituto Tecnológico de Aeronáutica.
  • Blanksby, S. J., and G. B. Ellison. 2003. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36 (4):255–63. doi:10.1021/ar020230d.
  • Cheng, H., J. Fan, Y. Zhang, D. Liu, and K. K. Ostrikov. 2020. Nanosecond pulse plasma dry reforming of natural gas. Catal. Today, 351, 103–112.
  • Czemichowski, A. 1994. Gliding arc. Applications to engineering and environment control. 66 (6):1301–10.
  • Feng, R., J. Li, Y. Wu, J. Zhu, X. Song, X. Li, et al. 2018. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor. Aerosp. Sci. Technol. 79:145–53. doi:10.1016/j.ast.2018.05.036.
  • Feng, R., J. Li, Y. Wu, M. Jia, D. Jin, et al. 2020. Ignition and blow-off process assisted by the rotating gliding arc plasma in a swirl combustor. Aerosp. Sci. Technol. 99:105752. doi:10.1016/j.ast.2020.105752.
  • Fulcheri, L., J.-D. Rollier, and J. Gonzalez-Aguilar. 2007. Design and electrical charaterization of a low current–high voltage compact arc plasma torch. Plasma Sources Sci. Technol. 16 (1):183–92. doi:10.1088/0963-0252/16/1/023.
  • Gong, X., Y. Lin, X. Li, A. Wu, H. Zhang, J. Yan, and C. Du. 2020. Decomposition of volatile organic compounds using gliding arc discharge plasma. Journal of the Air & Waste Management Association, 70(2): 138–157.
  • Gutsol, A., A. Rabinovich, and A. Friedman. 2011. Combustion-assisted plasma in fuel conversion. J. Appl. Phys. D: Appl. Phys. 44 (27):274001. doi:10.1088/0022-3727/44/27/274001.
  • He, L., Y. Chen, J. Deng, J. Lei, L. FEI, P. LIU, et al. 2019. Experimental study of rotating gliding arc discharge plasma-assisted combustion in an aero-engine combustion chamber. Chin. J. Aeronaut. 32 (2):337–46. doi:10.1016/j.cja.2018.12.014.
  • Indarto, A., D. R. Yang, C. H. Azhari, W. H. W. Mohtar, J.-W. Choi, H. Lee, H. K. Song, et al. 2007. Advanced VOCs decomposition method by gliding arc plasma. Chem. Eng. J. 131 (1–3):337–41. doi:10.1016/j.cej.2006.11.009.
  • Ju, Y., and W. Sun. 2015. Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. Sci. 48:21–83. doi:10.1016/j.pecs.2014.12.002.
  • Kalra, C., I. Matveev, and A. Gutsol. 2004. Transient gliding arc for fuel ignition and combustion control. Electronic Proceedings of 2004 Technical Meeting, Central States Section, The Combustion Institute.
  • Kalra, C. S., Y. I. Cho, A. Gutsol, A. Fridman, T. S. Rufael, and V. A. Deshpande. n.d. Plasma Catalytic Conversion of Methane in Ultra Rich Flame using Transient Gliding Arc Combustion Support T1 a T2 T3 b
  • Kalra, C. S., Y. I. Cho, A. Gutsol, A. Fridman, T. S. Rufael, et al. 2005. Gliding arc in tornado using a reverse vortex flow. Rev. Sci. Instrum. 76 (2):025110. doi:10.1063/1.1854215.
  • Kim, W., and J. Cohen. 2021. Plasma-assisted combustor dynamics control at realistic gas turbine conditions. Combustion Science and Technology, 193 (5): 869–888.
  • Kolev, S., and A. Bogaerts. 2018. 3D modeling of energy transport in a gliding arc discharge in argon. Plasma Sources Sci. Technol. 27 (12):125011. doi:10.1088/1361-6595/aaf29c.
  • Kong, C., J. Gao, J. Zhu, A. Ehn, M. Alden, and Z. Li. 2018. Characteristics of a gliding arc discharge under the influence of a laminar premixed flame. IEEE Trans. Plasma Sci. 1–7. doi:10.1109/TPS.2018.2877126.
  • Korolev, Y. D., O. B. Frants, N. V. Landl, A. I. Suslov, et al. 2012. Low-current plasmatron as a source of nitrogen oxide molecules. IEEE Trans. Plasma Sci. 40(11):2837–42. doi:10.1109/TPS.2012.2201755.
  • Korolev, Y. D., O. B. Frants, N. V. Landl, V. G. Geyman, I. A. Shemyakin, A. Enenko, I. B. Matveev, et al. 2009b. Plasma-assisted combustion system based on nonsteady-state gas-discharge plasma torch. IEEE Trans. Plasma Sci. 37 (12):2314–20. doi:10.1109/TPS.2009.2034163.
  • Korolev, Y. D., O. B. Frants, N. V. Landl, V. G. Geyman, I. B. Matveev, et al. 2007. Glow-to-spark transitions in a plasma system for ignition and combustion control. IEEE Trans. Plasma Sci. 35 (6):1651–57. doi:10.1109/TPS.2007.910133.
  • Korolev, Y. D., O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev. 2009a. Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition. IEEE Trans. Plasma Sci. 37 (4 PART 2):586–92. doi:10.1109/TPS.2009.2014453.
  • Korolev, Y. D., O. B. Frants, N. V. Landl, V. G. Geyman, V. S. Kasyanov, et al. 2014. Methane oxidation in a low-current nonsteady-state plasmatron. IEEE Trans. Plasma Sci. 42(6):1615–22. doi:10.1109/TPS.2014.2320321.
  • Korolev, Y. D., O. B. Frants, V. G. Geyman, N. V. Landl, V. S. Kasyanov, et al. 2011. Low-current gliding arc in an air flow. IEEE Trans. Plasma Sci. 39 (12):3319–25. doi:10.1109/TPS.2011.2151885.
  • Kosarev, I. N., S. V. Kindysheva, R. M. Momot, E. A. Plastinin, N. L. Aleksandrov, and A. Y. Starikovskiy. 2016. Comparative study of nonequilibrium plasma generation and plasma-assisted ignition for different C2 hydrocarbons. In Plasma Science (ICOPS), 2016 IEEE International Conference on, 1. IEEE.
  • Lee, D. H., K.-T. Kim, H. S. Kang, Y.-H. Song, J. E. Park, et al. 2013a. Plasma-assisted combustion technology for NOx reduction in industrial burners. Environ. Sci. Technol. 47 (19):10964–70. doi:10.1021/es401513t.
  • Lee, D. H., K.-T. Kim, H. S. Kang, Y.-H. Song, J. E. Park, et al. 2013b. Plasma-assisted combustion technology for NOx reduction in industrial burners. Environ. Sci. Technol. 47:10964–70. doi:10.1021/es401513t.
  • Lesueur, H., A. Czernichowski, and J. Chapelle. 1990. Électro-brûleurs à arcs glissants. Le J. de Phys. Colloques 51 (C5):C5-57-C5-64. doi:10.1051/jphyscol:1990508.
  • Ombrello, T., X. Qin, Y. Ju, A. Gutsol, and A. Fridman. January 2005. Enhancement of Combustion and Flame Stabilization Using Stabilized Non-Equilibrium Plasma, 1–8.
  • Ombrello, T., X. Qin, Y. Ju, A. Gutsol, A. Fridman, C. Carter, et al. 2006. Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge. AIAA J. 44 (1):142–50. doi:10.2514/1.17018.
  • Ombrello, T., Y. Ju, and A. Friedman. 2008. Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma. AIAA J. 46 (10):2424–33. doi:10.2514/1.33005.
  • Ono, T., T. Segawa, N. Saito, E. Takahashi, M. Nishioka, et al. 2017. Effect of long-lived species generated by non-thermal plasmas on the auto-ignition delay of liquid Hydrocarbon fuel-air pre-mixtures. Combusti. Sci. Technol. 189 (9):1624–38. doi:10.1080/00102202.2017.1318856.
  • Pinto, A. J., J. C. Sagás, and P. T. Lacava. 2018. Repetition frequency of a DC gliding arc discharge in plasma-assisted fuel-rich combustion. Europhys. Lett. 123 (6):65001. doi:10.1177/001440297203800709.
  • Rueangjitt, N., Æ. W. Jittiang, and Æ. K. Pornmai. 2009. Combined reforming and partial oxidation of CO 2 -containing natural gas using an AC multistage gliding arc discharge system: Effect of stage number of plasma reactors. 433–53. doi:10.1007/s11090-009-9191-1.
  • Rueangjitt, N., T. Sreethawong, and S. Chavadej. 2008. Reforming of CO 2-containing natural gas using an AC gliding arc system: Effects of operational parameters and oxygen addition in feed. Plasma Chem. Plasma Proc. 28 (1):49–67. doi:10.1007/s11090-007-9119-6.
  • Ruscic, B. 2015. Active thermochemical tables: Sequential bond dissociation enthalpies of methane, ethane, and methanol and the related thermochemistry. J. Phys. Chem. A. 119 (28):7810–37. doi:10.1021/acs.jpca.5b01346.
  • Sagás, J. C., A. H. Neto, A. C. Pereira Filho, H. S. Maciel, P. T. Lacava, et al. 2011. Basic characteristics of gliding-arc discharges in air and natural gas. IEEE Trans. Plasma Sci. 39 (2):775–80. doi:10.1109/TPS.2010.2096481.
  • Sagás, J. C., H. S. Maciel, and P. T. Lacava. 2016. Effects of non-steady state discharge plasma on natural gas combustion: Flammability limits, flame behavior and hydrogen production. Fuel 182:118–23. doi:10.1016/j.fuel.2016.05.100.
  • Song, Y. H., et al. 2013. Clean combustion using rotating arc. Int. J. Plasma Environ. Sci. Technol. 7 (2):97–103.
  • Sun, J., Y. Tang, and S. Li. 2021. Plasma-assisted stabilization of premixed swirl flames by gliding arc discharges. Proc. Combust. Inst. 38 (4):6733–41. doi:10.1016/j.proci.2020.06.223.
  • Tu, X., and J. C. Whitehead. 2014. Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. Int. J. Hydrogen Energy. 39 (18):9658–69. doi:10.1016/j.ijhydene.2014.04.073.
  • Uddi, M., N. Jiang, E. Mintusov, I. V. Adamovich, W. R. Lempert, et al. 2009. Atomic oxygen measurements in air and air/fuel nanosecond pulse discharges by two-photon laser-induced fluorescence. Proc. Combust. Inst. 32 (1):929–36. doi:10.1016/j.proci.2008.06.049.
  • Varella, R. A., J. C. Sagás, and C. A. Martins. 2016. Effects of plasma-assisted combustion on pollutant emissions of a premixed flame of natural gas and air. Fuel 184:269–76. doi:10.1016/j.fuel.2016.07.031.
  • Wang, W., B. Patil, S. Heijkers, V. Hessel, A. Bogaerts, et al. 2017b. Nitrogen fixation by gliding arc plasma: Better insight by chemical kinetics modelling. Chem. Sus. Chem. 10 (10):2145–57. doi:10.1002/cssc.201700095.
  • Wang, W., D. Mei, X. Tu, A. Bogaerts, et al. June 2017a. Gliding arc plasma for CO2conversion: Better insights by a combined experimental and modeling approach. Chem. Eng. J. 330:11–25. doi:10.1016/j.cej.2017.07.133.
  • Wu, W., C. A. Fuh, and C. Wang. 2015. Comparative study on microwave plasma-assisted combustion of premixed and nonpremixed methane/air mixtures. Combusti. Sci. Technol. 187 (7):999–1020. doi:10.1080/00102202.2014.993032.
  • Wu, W. W., G. H. Ni, Q. F. Lin, Q. J. Guo, Y. D. Meng, et al. 2015. Experimental investigation of premixed methane-air combustion assisted by alternating-current rotating gliding arc. IEEE Trans. Plasma Sci. 43 (12):3979–85. doi:10.1109/TPS.2015.2435036.
  • Xia, Y., N. Lu, B. Wang, J. Li, K. Shang, N. Jiang, Y. Wu, et al. 2017. Dry reforming of CO2-CH4 assisted by high-frequency AC gliding arc discharge : Electrical characteristics and the effects of different parameters. Int. J. Hydrogen Energy. 42 (36):22776–85. doi:10.1016/j.ijhydene.2017.07.104.
  • Zhang, H., F. Zhu, X. Li, K. Cen, C. Du, X. Tu, et al. 2016a. Enhanced hydrogen production by methanol decomposition using a novel rotating gliding arc discharge plasma. RSC Adv. 6 (16):12770–81. doi:10.1039/c5ra26343c.
  • Zhang, H., F. Zhu, X. Tu, Z. Bo, K. Cen, X. Li, et al. 2016b. Characteristics of atmospheric pressure rotating gliding arc plasmas. Plasma Sci. Technol. 18 (5):473–77. doi:10.1088/1009-0630/18/5/05.
  • Zhao, F., S. Li, Y. Ren, Q. Yao, Y. Yuan, et al. 2016. Investigation of mechanisms in plasma-assisted ignition of dispersed coal particle streams. Fuel 186:518–24. doi:10.1016/j.fuel.2016.08.078.
  • Zhu, F., X. Li, H. Zhang, A. Wu, J. Yan, M. Ni, H. Zhang, A. Buekens, et al. 2016. Destruction of toluene by rotating gliding arc discharge. Fuel 176:78–85. doi:10.1016/j.fuel.2016.02.065.
  • Zhu, J., et al. (2015) ‘Effects of gliding arc discharge penetrating a premixed flame’, in Proceedings of the European Combustion Meeting.
  • Zhu, J., J. Gao, A. Ehn, M. Aldén, A. Larsson, Y. Kusano, Z. Li, et al. 2017. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure. Phys Plasmas 24 (1):1. doi:10.1063/1.4974266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.