225
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Primary Fragmentation Characteristics in the Process of Coal Slime Combustion

, , , , , & show all
Pages 1328-1345 | Received 21 Mar 2021, Accepted 22 Oct 2021, Published online: 29 Nov 2021

References

  • Chen, F., and J. Wang. 2017. Comprehensive utilization and treatment of coal slime in coal preparation plant. Coal Chem. Indust 40 (6):130–33.
  • Costa, F. F., and M. Costa. 2015. Particle fragmentation of raw and torrefied biomass during combustion in a drop tube furnace. Fuel 159:530–37. doi:10.1016/j.egypro.2015.02.056.
  • Cui, T., J. Xu, W. Fan, Q. Chang, G. Yu, and F. Wang. 2016. Experimental study on fragmental behavior of coals and biomasses during rapid pyrolysis. Bioresour. Technol 222:439–47. doi:10.1016/j.biortech.2016.09.131.
  • Cui, T., Z. Zhou, Z. Dai, C. Li, G. Yu, and F. Wang. 2015. Primary fragmentation characteristics of coal particles during rapid pyrolysis. Energy Fuels 29 (10):150824112013009. doi:10.1021/acs.energyfuels.5b01289.
  • Dacombe, P., M. Pourkashanian, A. Williams, and L. Yap. 1999. Combustion- induced fragmentation behavior of isolated coal particles. Fuel 78 (15):1847–57. doi:10.1016/S0016-2361(99)00076-9.
  • Dacombe, P. J., E. Hampartsoumian, and M. Pourkashanian. 1994. Fragmentation of large coal particles in a drop-tube furnace. Fuel 73 (8):1365–67. doi:10.1016/0016-2361(94)90315-8.
  • Friedemann, J., A. Wagner, A. Heinze, S. Krzack, and B. Meyer. 2016. Direct optical observation of coal particle fragmentation behavior in a drop-tube reactor. Fuel 166:382–91. doi:10.1016/j.fuel.2015.11.007.
  • Gao, M., K. Wan, Z. Miao, Q. He, P. Ji, and Z. Pei. 2019. Hot-air drying behavior and fragmentation characteristic of single lignite particle. Fuel 247:209–16. doi:10.1016/j.fuel.2019.03.055.
  • Kosowska-Galacbowska, M., and A. Luckos 2009. An experimental investigation into the fragmentation of coal particles in a fluidized-bed combustor. International Conference on Fluidized Bed Combustion, Isbn 978-3-642-02681-2. Springer-Verlag Berlin Heidelberg (Vol.70, pp.51–60). Proc. Int. Conf. Fluid. Bed Combust. ISBN 978-3-642-02681-2. Springer-Verlag Berlin Heidelberg, p. 330,2010.
  • Li, C. W., M. Hao, Z. A. Geng, Y. H. He, and S. Y. Wei. 2020. Drop-weight impact fragmentation of gas-containing coal particles-sciencedirect. Particuology. doi:10.1016/j.partic.2020.09.005.
  • Lu, G., Z. Kai, and F. Cheng. 2017. Influence of pine sawdust on SO2 retention by CaO in coal slime briquette. Energy Sources Part A Recovery Util. Environ. Eff 39 (16):1–8. doi:10.1080/15567036.2017.1349215.
  • Lu, R., Ru, Y., Li, J., Zhao, P., Gao, H., Sun, X., and Wang, H. 2020. Experimental study on coal slime co-firing in a supercritical 600 MW CFB boiler. Therm. Power Generat.49(5): 140–145. doi:10.19666/j.rlfd.201912282
  • Ni, C., G. Y. Xie, Z. G. Jiang, B. Liu, and Y. L. Peng. 2013. Problem analysis and optimization test for “2+2” coal slime separation process. J. China Coal Soc 38 (11):2035–2041(7).
  • Ni, M., W. Luo, G. Huang, G. Luo, and K. Cen. 1986. Agglomeration of CWM in fluidized bed combustor. J. Zhejiang Univ 1986 (6):43–50.
  • Senneca, O., P. Bareschino, M. Urciuolo, and R. Chirone. 2017. Prediction of structure evolution and fragmentation phenomena during combustion of coal: Effects of heating rate. Fuel Process. Technol 166:228–36. doi:10.1016/j.fuproc.2017.06.010.
  • Senneca, O., M. Urciuolo, and R. Chirone. 2013. A semidetailed model of primary fragmentation of coal. Fuel 104 (2):253–61. doi:10.1016/j.fuel.2012.09.026.
  • Senneca, O., M. Urciuolo, R. Chirone, and D. Cumbo. 2011. An experimental study of fragmentation of coals during fast pyrolysis at high temperature and pressure. Fuel 90 (9):2931–38. doi:10.1016/j.fuel.2011.04.012.
  • Shu, J., and E. P. Co. 2015. Technological optimization achieves high range blending combustion of coal slime. J. State Grid Tech. Colg. 18 (3):52–54,57
  • Si, Y., and M. Du. 2017. Research progress of slime utilization. Guangdong Chem. Indust. 44 (4):79–80
  • Song, Z., C. Jing, L. Yao, X. Zhao, J. Sun, W. Wang, Y. Mao, and C. Ma. 2017. Coal slime hot air/microwave combined drying characteristics and energy analysis. Fuel Process. Technol 156:491–99. doi:10.1016/j.fuproc.2016.10.016.
  • Song, Z., C. Jing, L. Yao, X. Zhao, W. Wang, Y. Mao, and C. Ma. 2016. Microwave drying performance of single-particle coal slime and energy consumption analyses. Fuel Process. Technol 143:69–78. doi:10.1016/j.fuproc.2015.11.012.
  • Stubington, J. F., and T. M. Linjewile. 1989. The effects of fragmentation on devolatilization of large coal particles. Fuel 68 (2):155–60. doi:10.1016/0016-2361(89)90316-5.
  • Stubington, J. F., and B. Moss. 1995. On the timing of primary fragmentation during bituminous coal particle devolatilisation in a fluidized bed combustor. Can. J. Chem. Eng 73 (4):505–09. doi:10.1002/cjce.5450730410.
  • Urciuolo, M., R. Solimene, R. Chirone, and P. Salatino. 2012. Fluidized bed combustion and fragmentation of wet sewage sludge. Bioresour. Technol 43 (11):97–104. doi:10.16/j.expthermflusci.2012.03.019.
  • Vershinina, K. Y., G. V. Kuznetsov, and P. A. Strizhak. 2017. Sawdust as ignition intensifier of coal water slurries containing petrochemicals. Energy 140:69–77. doi:10.1016/j.energy.2017.08.108.
  • Wang, C. B., M. S. Qiao, H. Shao, and M. Lei. 2016. SO2 emission characteristics during constant temperature combustion of pulverized coal in high-temperature low-oxygen environment. J. Chinese Soc. Pow. Eng 36 (2):136–42.
  • Wang, H., S. Guo, L. Yang, Y. Guo, and X. Jiang. 2015. Surface morphology and porosity evolution of CWS spheres from a bench-scale fluidized bed. Energy Fuels 29 (5):150415123742008. doi:10.1021/ef502923t.
  • Wang, H., S. Liu, X. Wang, Y. Shi, X. Qin, and C. Song. 2017. Ignition and combustion behavior of coal slime in air. Energy Fuels 31 (10). doi: 10.1021/acs.energyfuels.7b01960.
  • Wu, X., X. Lin, L. Yao, and K. Cen. 2019. Primary fragmentation behavior investigation in pulverized coal combustion with high-speed digital inline holography. Energy Fuels 33:9. doi:10.1021/acs.energyfuels.9b01521.
  • Yang, Q. U., M. Chu, S. Zhu, and J. Y. Guo. 2019. Effects of heating rate on heat fragmentation characteristics of lignite. J. China U. Min. Technol 48 (1):188–94. doi:10.13247/j.cnki.jcumt.000907.
  • Zhang, H., K. Cen, J. Yan, and M. Ni. 2002. The fragmentation of coal particles during the coal combustion in a fluidized bed. Fuel 81 (14):1835–40. doi:10.1016/S0016-2361(02)00111-4.
  • Zhao, C., and K. Luo. 2017. Sulfur, arsenic, fluorine and mercury emissions resulting from coal-washing byproducts: A critical component of China’s emission inventory. Atmos. Environ 152:270–78. doi:10.1016/j.atmosenv.2016.12.001.
  • Zhou, K., Q. Lin, H. Hu, and L. Song. 2017. The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atm. Energy 136 (oct.1):173–84. doi:10.1016/j.energy.2016.02.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.