216
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Catalytic Oxidation of Lean Methane over Ni/MgAl2O4 Synthesized by a Novel and Facile Mechanochemical Preparation Method

, , &
Pages 1819-1839 | Received 20 Jun 2021, Accepted 05 Nov 2021, Published online: 24 Nov 2021

References

  • Akbari, E., S. M. Alavi, and M. Rezaei. 2017. Synthesis gas production over highly active and stable nanostructured Ni[Sbnd]MgO[Sbnd]Al2O3 catalysts in dry reforming of methane: Effects of Ni contents. Fuel 194:171–79. doi:10.1016/j.fuel.2017.01.018.
  • Akbari, E., S. M. Alavi, and M. Rezaei. 2018. CeO2 promoted Ni-MgO-Al2O3 nanocatalysts for carbon dioxide reforming of methane. J. CO2 Util. 24:128–38. doi:10.1016/j.jcou.2017.12.015.
  • Arandiyan, H., S. S. Mofarah, C. C. Sorrell, and E. Doustkhah , et al. 2021. Defect engineering of oxide perovskites for catalysis and energy storage: Synthesis of chemistry and materials science. Chem. Soc. Rev. 50 (18):10116–211. doi:10.1039/d0cs00639d.
  • Asl, E. A., M. Haghighi, and A. Talati. 2019. Sono-solvothermal fabrication of flowerlike Bi7O9I3-MgAl2O4 p-n nano-heterostructure photocatalyst with enhanced solar-light-driven degradation of methylene blue. Sol. Energy 184:426–39. doi:10.1016/j.solener.2019.04.012.
  • Banerjee, A., S. Das, S. Misra, and S. Mukhopadhyay. 2009. Structural analysis on spinel (MgAl2O4) for application in spinel-bonded castables. Ceram. Int. 35 (1):381–90. doi:10.1016/j.ceramint.2007.11.009.
  • Boroujerdnia, M., and A. Obeydavi. 2016. Synthesis and characterization of NiO/ MgAl2O4 nanocrystals with high surface area by modified sol-gel method. Micropor. Mesopor. Mater. 228:289–96. doi:10.1016/j.micromeso.2016.04.006.
  • Buang, N. A., Z. A. Majid, Y. Sulaiman, S. M. Sanip, and A. F. Ismail. 2006. Effect of addition of Ni metal catalyst onto the Co and Fe supported catalysts for the formation of carbon nanotubes. J. Porous Mater. 13 (3–4):331–34. doi:10.1007/s10934-006-8026-1.
  • Çetintaş, S., U. Yildiz, and D. Bingöl. 2018. A Novel reagent-assisted mechanochemical method for nickel recovery from lateritic ore. J. Clean. Prod. 199:616–32. doi:10.1016/j.jclepro.2018.07.212.
  • Chen, J., H. Arandiyan, X. Gao, and J. Li. 2015. Recent advances in catalysts for methane combustion. Catal. Surv. Asia 19 (3):140–71. doi:10.1007/s10563-015-9191-5.
  • Chen, J., W. Shi, X. Zhang, H. Arandiyan, L. Dongfang, and J. Li. 2011. Roles of Li+ and Zr4+ cations in the catalytic performances of Co1-xMxCr2O4 (M= Li, Zr; X= 0-0.2) for methane combustion. Environ. Sci. Technol. 45 (19):8491–97. doi:10.1021/es201659h.
  • Ciuparu, D., M. R. Lyubovsky, E. Altman, L. D. Pfefferle, and A. Datye. 2002. Catalytic combustion of methane over palladium-based catalysts. Catal. Rev. 44 (4):593–649. doi:10.1081/CR-120015482.
  • Dai, Y., V. P. Kumar, C. Zhu, M. J. MacLachlan, K. J. Smith, and M. O. Wolf. 2018. Mesoporous silica-supported nanostructured PdO/CeO2 catalysts for low-temperature methane oxidation. ACS Appl. Mater. Interfaces 10 (1):477–87. doi:10.1021/acsami.7b13408.
  • Ding, Y., S. Wang, L. Zhang, Z. Chen, M. Wang, and S. Wang. 2017. A facile method to promote LaMnO3 perovskite catalyst for combustion of methane. Catal. Commun. 97:88–92. doi:10.1016/j.catcom.2017.04.022.
  • Domingos, D., M. T. S. Lílian, F. Rodrigues, and S. T. Brandao. 2014. Combustion of methane using palladium catalysts supported in alumina or zirconia. Combust. Sci. Technol. 186 (4–5):518–28. doi:10.1080/00102202.2014.883242.
  • Ewais, E. M. M., D. H. A. Besisa, A. A. M. El-Amir, S. M. El-Sheikh, and D. E. Rayan. 2015. Optical properties of nanocrystalline magnesium aluminate spinel synthesized from industrial wastes. J. Alloys Compd. 649:159–66. doi:10.1016/j.jallcom.2015.07.116.
  • Fino, D., N. Russo, G. Saracco, and V. Specchia. 2006. CNG engines exhaust gas treatment via Pd-spinel-type-oxide catalysts. Catal. Today 117 (4):559–63. doi:10.1016/j.cattod.2006.06.003.
  • Gac, W. 2011. Acid–base properties of Ni–MgO–Al2O3 materials. Appl. Surf. Sci. 257 (7):2875–80. doi:10.1016/j.apsusc.2010.10.084.
  • Gancheva, M., R. Iordanova, Y. Dimitriev, D. Nihtianova, P. Stefanov, and A. Naydenov. 2013. Mechanochemical synthesis, characterization and catalytic activity of Bi2WO6 nanoparticles in CO, n-hexane and methane oxidation reactions. J. Alloys Compd. 570:34–40. doi:10.1016/j.jallcom.2013.03.157.
  • Habibi, N., Y. Wang, H. Arandiyan, and M. Rezaei. 2017. Low-temperature synthesis of mesoporous nanocrystalline magnesium aluminate (MgAl2O4) spinel with high surface area using a novel modified sol-gel method. Adv. Powder Technol. 28 (4):1249–57. doi:10.1016/j.apt.2017.02.012.
  • Hadian, N., and M. Rezaei. 2013. Combination of dry reforming and partial oxidation of methane over Ni catalysts supported on nanocrystalline MgAl2O4. Fuel 113:571–79. doi:10.1016/j.fuel.2013.06.013.
  • Hadian, N., M. Rezaei, Z. Mosayebi, and F. Meshkani. 2012. CO2 reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area. J. Natl. Gas Chem. 21 (2):200–06. doi:10.1016/S1003-9953(11)60355-1.
  • Halabi, M. H., M. H. J. M. De Croon, J. Van Der Schaaf, P. D. Cobden, and J. C. Schouten. 2010. Intrinsic kinetics of low temperature catalytic methane-steam reforming and water-gas shift over Rh/CeAZr1-ΑO2 catalyst. Appl. Catal. A 389 (1–2):80–91. doi:10.1016/j.apcata.2010.09.005.
  • He, L., Y. Fan, J. Bellettre, J. Yue, and L. Luo. 2020. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renew. Sustain. Energy Rev. 119. doi:10.1016/j.rser.2019.109589.
  • Huang, W., W. Zha, D. Zhao, and S. Feng. 2019. The effect of active oxygen species in nano-ZnCr2O4 spinel oxides for methane catalytic combustion. Solid State Sci. 87:49–52. doi:10.1016/j.solidstatesciences.2018.11.006.
  • Jodłowski, P. J., R. J. Jędrzejczyk, D. Chlebda, M. Gierada, and J. Łojewska. 2017. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface. J. Catal. 350:1–12. doi:10.1016/j.jcat.2017.03.022.
  • Khan, H. A., J. Hao, and A. Farooq. 2020. Catalytic performance of Pd catalyst supported on Zr: Cemodified mesoporous silica for methane oxidation. Chem. Eng. J. 397:125489. doi:10.1016/j.cej.2020.125489.
  • Klvana, D., J. Chaouki, C. Guy, and J. Kirchnerová. 1996. Catalytic combustion: New catalysts for new technologies. Combust. Sci. Technol. 121 (1–6):51–65. doi:10.1080/00102209608935586.
  • Koo, K. Y., H. S. Roh, Y. T. Seo, D. J. Seo, W. L. Yoon, and S. B. Park. 2008. A highly effective and stable nano-sized Ni/MgO-Al2O3 catalyst for Gas to Liquids (GTL) process. Int. J. Hydrog. Energy 33 (8):2036–43. doi:10.1016/j.ijhydene.2008.02.029.
  • Li, H., F. Ruifeng, W. Duan, and Z. Jiang. 2016. The preparation effect on activity and thermal stability of La0.8Ca0.2FeO3 perovskite honeycombs dispersed by MgAl2O4 spinel washcoat for catalytic combustion of dilute methane. J. Environ. Chem. Eng. 4 (2):2187–95. doi:10.1016/j.jece.2015.11.039.
  • Liew, -L.-L., H. Q. Le, and G. K. L. Goh. 2012. Microwave-assisted hydrothermally grown epitaxial ZnO films on〈1 1 1〉MgAl2O4substrate. J. Solid State Chem. 189:90–95. doi:10.1016/j.jssc.2011.11.021.
  • Liu, W., Y. Xu, Z. Tian, and Z. Xu. 2003. A thermodynamic analysis on the catalytic combustion of methane. J. Natl. Gas Chem. 12:237–42. doi:10.1016/S1003-9953-2003-12-4-237-242.
  • Mateyshina, Y. G., D. V. Alekseev, V. R. Khusnutdinov, and N. F. Uvarov. 2019. Mechanochemical synthesis of inert component for composite solid electrolytes CsNO2 – MgAl2O4. Mater. Today Proc. 12:13–16. doi:10.1016/j.matpr.2019.02.206.
  • Meshkani, F., S. F. Golesorkh, M. Rezaei, and M. Andache. 2017. Nickel catalyst supported on mesoporous MgAl2O4 nanopowders synthesized via a homogenous precipitation method for dry reforming reaction. Res. Chem. Intermed. 43 (1):545–59. doi:10.1007/s11164-016-2639-z.
  • Mosayebi, Z., M. Rezaei, A. B. Ravandi, and N. Hadian. 2012. Autothermal reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area. Int. J. Hydrog. Energy 37 (2):1236–42. doi:10.1016/j.ijhydene.2011.09.141.
  • Nam, S., M. Lee, B.-N. Kim, Y. Lee, and S. Kang. 2017. Morphology controlled Co-precipitation method for nano structured transparent MgAl2O4. Ceram. Int. 43 (17):15352–15259. doi:10.1016/j.ceramint.2017.08.075.
  • Naskar, M. K., and M. Chatterjee. 2005. Magnesium aluminate (MgAl2O4) spinel powders from water-based sols. J. Am. Ceram. Soc. 88 (1):38–44. doi:10.1111/j.1551-2916.2004.00019.x.
  • Noelia, B. M., A. E. Galetti, and M. Cristina Abello. 2011. Ni catalysts supported over MgAl2O4 modified with Pr for hydrogen production from ethanol steam reforming. Appl. Catal. A 394 (1–2):124–31. doi:10.1016/j.apcata.2010.12.038.
  • Nuernberg, G. B., E. L. Foletto, L. F. D. Probst, N. L. V. Carreño, and M. A. Moreira. 2013. MgAl2O4 spinel particles prepared by metal-chitosan complexation route and used as catalyst support for direct decomposition of methane. J. Mol. Catal. A 370:22–27. doi:10.1016/j.molcata.2012.12.007.
  • Pashchenko, D. 2019. Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study. Energy 185:573–84. doi:10.1016/j.energy.2019.07.065.
  • Persson, K., A. Ersson, S. Colussi, A. Trovarelli, and S. G. Järås. 2006. Catalytic combustion of methane over bimetallic Pd-Pt catalysts: The influence of support materials. Appl. Catal. B 66 (3–4):175–85. doi:10.1016/j.apcatb.2006.03.010.
  • Qiao, D., L. Guanzhong, D. Mao, Y. Guo, and Y. Guo. 2011. Effect of Ca doping on the performance of CeO2-NiO catalysts for CH4 catalytic combustion. J. Mater. Sci. 46 (3):641–47. doi:10.1007/s10853-010-4786-8.
  • Rastegarpanah, A., F. Meshkani, and M. Rezaei. 2017. Thermocatalytic decomposition of methane over mesoporous nanocrystalline promoted Ni/MgO·Al2O3 catalysts. Int. J. Hydrog. Energy 42 (26):16476–88. doi:10.1016/j.ijhydene.2017.05.044.
  • Reinke, M., J. Mantzaras, R. Bombach, S. Schenker, N. Tylli, and K. Boulouchos. 2007. Effects of H2O and CO2 dilution on the catalytic and gas-phase combustion of methane over platinum at elevated pressures. Combust. Sci. Technol. 179 (3):553–600. doi:10.1080/00102200600671930.
  • Rezaei, M., and S. M. Alavi. 2019. Dry reforming over mesoporous nanocrystalline 5%Ni/M-MgAl2O4 (M: CeO2, ZrO2, La2O3) catalysts. Int. J. Hydrog. Energy 44 (31):16516–25. doi:10.1016/j.ijhydene.2019.04.213.
  • Rezaei, M., S. M. Alavi, S. Sahebdelfar, P. Bai, X. Liu, and Z.-F. Yan. 2008. CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts. Appl. Catal. B 77 (3–4):346–54. doi:10.1016/j.apcatb.2007.08.004.
  • Saberi, A., F. Golestani-Fard, H. Sarpoolaky, M. Willert-Porada, T. Gerdes, and R. Simon. 2008. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route. J. Alloys Compd. 462 (1–2):142–46. doi:10.1016/j.jallcom.2007.07.101.
  • Sajjadi, B., A. A. A. Raman, and H. Arandiyan. 2016. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew. Sustain. Energy Rev. 63:62–92. doi:10.1016/j.rser.2016.05.035.
  • Senseni, Z., F. M. Alireza, S. M. S. Fattahi, and M. Rezaei. 2017. A theoretical and experimental study of glycerol steam reforming over Rh/MgAl2O4 catalysts. Energy Convers. Manage. 154:127–37. doi:10.1016/j.enconman.2017.10.033.
  • Shan, W., M. Luo, P. Ying, W. Shen, and C. Li. 2003. Reduction property and catalytic activity of Ce1-XNiXO2 mixed oxide catalysts for CH4 oxidation. Appl. Catal. A 246 (1):1–9. doi:10.1016/S0926-860X(02)00659-2.
  • Sidwell, R. W., H. Zhu, R. J. Kee, and D. T. Wickham. 2003. Catalytic combustion of premixed methane-in-air on a high-temperature hexaaluminate stagnation surface. Combust. Flame 134 (1–2):55–66. doi:10.1016/S0010-2180(03)00064-6.
  • Su, Y. Q., J. X. Liu, I. A. W. Filot, L. Zhang, and E. J. M. Hensen. 2018. Highly active and stable CH4 oxidation by substitution of Ce4+ by Two Pd2+ ions in CeO2(111).”. ACS Catal. 8 (7):6552–59. doi:10.1021/acscatal.8b01477.
  • Yang, J., and Y. Guo. 2018. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane. Chin. Chem. Lett. 29 (2):252–60. doi:10.1016/j.cclet.2017.09.013.
  • Yang, L., Q. Meng, N. Lu, G. He, and J. Li. 2019. Combustion synthesis and spark plasma sintering of MgAl2O4 -graphene composites. Ceram. Int. 45 (6):7635–40. doi:10.1016/j.ceramint.2019.01.060.
  • Yousefi, S., M. Haghighi, and B. R. Vahid. 2018. Facile and efficient microwave combustion fabrication of Mg-spinel as support for MgO nanocatalyst used in biodiesel production from sunflower oil: Fuel type approach. Chem. Eng. Res. Des. 138:506–18. doi:10.1016/j.cherd.2018.09.013.
  • Yu, F., X. Xianglan, H. Peng, Y. Huajiang, Y. Dai, W. Liu, J. Ying, Q. Sun, and X. Wang. 2015. Porous NiO nano-sheet as an active and stable catalyst for CH4 deep oxidation. Appl. Catal. A 507:109–18. doi:10.1016/j.apcata.2015.09.023.
  • Zarei, M., F. Meshkani, and M. Rezaei. 2016. Preparation of mesoporous nanocrystalline Ni-MgAl2O4 catalysts by sol-gel combustion method and its applications in dry reforming reaction. Adv. Powder Technol. 27 (5):1963–70. doi:10.1016/j.apt.2016.06.028.
  • Zhang, Y., X. Wang, Y. Zhu, X. Liu, and T. Zhang. 2014. Thermal evolution crystal structure and Fe crystallographic sites in LaFe x Al12-x O19 hexaaluminates. J. Phys. Chem. C 118 (20):10792–804. doi:10.1021/jp500682d.
  • Zhong, L., Q. Fang, L. Xin, L. Quan, C. Zhang, and G. Chen. 2019. Influence of preparation methods on the physicochemical properties and catalytic performance of Mn-Ce catalysts for lean methane combustion. Appl. Catal. A 579:151–58. doi:10.1016/j.apcata.2019.04.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.