233
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on Gas Migration Laws at Return Air Side of Goaf under High-Temperature Conditions

ORCID Icon, , , &
Pages 1930-1944 | Received 20 Sep 2021, Accepted 10 Nov 2021, Published online: 30 Dec 2021

References

  • Brodny, J., and M. Tutak. 2018. Determination of the zone with a particularly high risk of endogenous fires in the goaves of a longwall with Caving. Journal of Applied Fluid Mechanics 3:545–53.
  • Brodny, J., M. Tutak, and M. Michalak. 2017. A data warehouse as an indispensable tool to determine the effectiveness of the use of the longwall shearer. Communications in Computer and Information Science 716:453–65.
  • Chen, S. H., and Z. H. Zhang. 2019. Determination of coal pillar width and support parameters in deep coal mines—A case study. J Test Eval 47 (4):20170054. doi:10.1520/JTE20170054.
  • Cheng, Y. P., L. Wang, and X. L. Zhang. 2010. Environmental impact of coal mine methane emissions and responding strategies in China. International Journal of Greenhouse Gas Control 5 (1):157–66. doi:10.1016/j.ijggc.2010.07.007.
  • Kong, B., Z. H. Li, Y. L. Yang, Z. Liu, and D. C. Yan. 2017. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environmental Science and Pollution Research 24 (30):23453–70. doi:10.1007/s11356-017-0209-6.
  • Li, L., B. T. Qin, J. S. Liu, and Y. K. Leong. 2020. Integrated experimentation and modeling of the formation processes underlying coal combustion-triggered methane explosions in a mined-out area. Energy 203:117855. doi:10.1016/j.energy.2020.117855.
  • Li, L., B. T. Qin, D. Ma, H. Zhuo, H. J. Liang, and A. Gao. 2018. Unique spatial methane distribution caused by spontaneous coal combustion in coal mine goafs: An experimental study. Process Safety and Environmental Protection 116:199–207. doi:10.1016/j.psep.2018.01.014.
  • Lin, B. Q., J. H. Liu, and Y. C. Yang. 2012. Impact of carbon intensity and energy security constraints on China’s coal import. Energy Policy 48:137–47. doi:10.1016/j.enpol.2012.04.079.
  • Liu, J. W., C. Y. Liu, and X. H. Li. 2020. Stress transfer law and its influencing factors of mesoscopic fracturing of coal rock mass. Arabian Journal of Geosciences 13:1–12.
  • Ma, D., B. T. Qin, Y. Gao, J. N. Jiang, and B. C. Feng. 2021. An experimental study on the methane migration induced by spontaneous combustion of coal in longwall gobs. Process Safety and Environmental Protection 147:292–99. doi:10.1016/j.psep.2020.09.046.
  • Ma, D., B. T. Qin, L. Li, A. Gao, and Y. Gao. 2019. Study on the methane explosion regions induced by spontaneous combustion of coal in longwall gobs using a scaled-down experiment set-up. Fuel 254:115547. doi:10.1016/j.fuel.2019.05.130.
  • Shi, Q. L., and B. T. Qin. 2021. Film-forming property and oxygen barrier characteristic of gel-stabilized foam used for controlling spontaneous combustion of coal. Energy & Fuels 35 (15):12083–90. doi:10.1021/acs.energyfuels.1c01702.
  • Su, B. Y., J. C. Yu, and C. X. Sheng. 2016. Borehole electromagnetic method for exploration of coal mining goaf. Elektronika Ir Elektrotechnika 22 (4):37–40. doi:10.5755/j01.eie.22.4.15913.
  • Szurgacz, D., M. Tutak, J. Brodny, L. Sobik, and O. Zhironkina. 2020. The method of combating coal spontaneous combustion hazard in goafs—a case study. Energies 13 (17):4538. doi:10.3390/en13174538.
  • Tang, Z. Q., S. Q. Yang, G. Xu, and M. Sharifzadeh. 2019. Disaster-causing mechanism and risk area classification method for composite disasters of gas explosion and coal spontaneous combustion in deep coal mining with narrow coal pillars. Process Safety and Environmental Protection 132:182–88. doi:10.1016/j.psep.2019.09.036.
  • Tutak, M., J. Brodny, D. Szurgacz, L. Sobik, and S. Zhironkin. 2020. The impact of the ventilation system on the methane release hazard and spontaneous combustion of coal in the area of exploitation-a case study. Energies 13 (18):4891. doi:10.3390/en13184891.
  • Tutak, M., and J. Brodny Prague · Czech Republic .2017. Determination of particular endogenous fires hazard zones in goaf with caving of longwall. World Multidisciplinary Earth Sciences Symposium doi:10.1088/1755-1315/95/4/042026.
  • Wang, G. F., Y. X. Xu, and H. W. Ren. 2019. Intelligent and ecological coal mining as well as clean utilization technology in China: Review and prospects. International Journal of Mining Science and Technology 2 (2):161–69. doi:10.1016/j.ijmst.2018.06.005.
  • Xia, T. Q., F. B. Zhou, X. X. Wang, J. H. Kang, and Z. J. Pan. 2017. Safety evaluation of combustion-prone longwall mining gobs induced by gas extraction: A simulation study. Process Safety and Environmental Protection 109:677–87. doi:10.1016/j.psep.2017.04.008.
  • Xie, H. P., Y. Ju, F. Gao, M. Gao, and R. Zhang. 2017. Groundbreaking theoretical and technical conceptualization of fluidized mining of deep underground solid mineral resources. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research 67:68–70. doi:10.1016/j.tust.2017.04.021.
  • Xu, Y., Z. J. Li, H. S. Liu, X. W. Zhai, R. R. Li, P. F. Song, and M. T. Jia. 2020. A model for assessing the compound risk represented by spontaneous coal combustion and methane emission in a gob. J. Clean. Prod. 273:122925. doi:10.1016/j.jclepro.2020.122925.
  • Zhang, L., W. Wu, J. Wei, Y. Bian, and H. Luo. 2021a. Preparation of foamed gel for preventing spontaneous combustion of coal. Fuel 300:121024. doi:10.1016/j.fuel.2021.121024.
  • Zhang, L. L., Q. Y. Yang, B. M. Shi, Y. H. Niu, and Z. Zhong. 2021b. Influences of a pipeline’s bending angle on the propagation law of coal dust explosion induced by gas explosion. Combustion Science and Technology 193 (5):798–811. doi:10.1080/00102202.2019.1673381.
  • Zhang, Y. J., G. R. Feng, M. Zhang, H. R. Ren, J. W. Bai, Y. X. Guo, H. N. Jiang, and L. X. Kang. 2016. Residual coal exploitation and its impact on sustainable development of the coal industry in China. Energy Policy 96:534–41. doi:10.1016/j.enpol.2016.06.033.
  • Zhao, J., and J. C. Yu. 2016. Exploration on nonlinear geo-electrical structures to detect coal mine goafs using three dimensional borehole resistivity imaging discrete approach. Journal of Difference Equations and Applications 23 (1–2):312–21. doi:10.1080/10236198.2016.1226289.
  • Zhao, Z. G., F. T. Sui, and J. P. Yan. 2020. Prediction of methane content of deep coal seams in the Sunan mining area in Anhui Province, China. International Journal of Oil, Gas and Coal Technology 23 (3):351. doi:10.1504/IJOGCT.2020.105778.
  • Zhou, A. T., K. Wang., L. Li, and C. Wang. 2017. A roadway driving technique for preventing coal and gas outbursts in deep coal mines. Environmental Earth Sciences 76 (6):236. doi:10.1007/s12665-017-6564-2.
  • Zhuo, H., B. T. Qin, Q. H. Qin, and Z. W. Su. 2019. Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams. Process Safety and Environmental Protection 131:246–54. doi:10.1016/j.psep.2019.09.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.