201
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Gray Correlation Analysis of CO Generation Pattern during Process of Low-temperature Spontaneous combustion of Jurassic Coal

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 2133-2149 | Received 31 May 2021, Accepted 21 Nov 2021, Published online: 30 Dec 2021

References

  • Aldossary, M., O. Almadni, M. Kharoshah, D. Alsaif, K. Alsowayigh, and M. Alfaraidy. 2015. Carbon monoxide toxicity in Dammam, KSA: Retrospective study. Egypt. J. Forensic Sci. 5:36–38.
  • BP p.l.c. BP Stat. Rev. 2021. World Energy. 70th (BP p.l.c.). ed.
  • Chen, X., H. Li, Q. Wang, and Y. Zhang. 2018. Experimental investigation on the macroscopic characteristic parameters of coal spontaneous combustion under adiabatic oxidation conditions with a mini combustion furnace. Combust. Sci. Technol. 190:1075–95.
  • Chen, X., T. Ma, X. Zhai, and C. Lei. 2019. Thermogravimetric and infrared spectroscopic study of bituminous coal spontaneous combustion to analyze combustion reaction kinetics. Thermochim. Acta 676:84–93.
  • Deng, J., Y. Xiao, Q. Li, J. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157:261–69.
  • Fang, S. S., X. S. Yao, J. Q. Zhang, and M. Han. 2017. Grey correlation analysis travel modes and their influence factors. Procedia Eng 174:347–52.
  • GB/T 212-2008. Standard of China–Proximate analysis of coal. Beijing, P.R. China., 2008. .
  • GB/T 482-2008. Standard of China–Sampling of coal seams, Beijing, P.R. China, 2008.
  • Ibarra, J. V., and J. L. Miranda. 1996. Detection of weathering in stockpiled coals by Fourier transform infrared spectroscopy. Vib. Spectrosc. 10:311–18.
  • Li, Q. W., Y. Xiao, C. P. Wang, J. Deng, and C. M. Shu. 2019. Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis. Fuel 250:235–44.
  • Liang, Y. T., J. Zhang, L. C. Wang, H. Z. Luo, and T. Ren. 2019. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review. J. Loss. Prevent Proc. 57:208–22.
  • Liu, T., B. Lin, X. Fu, Y. Gao, J. Kong, Y. Zhao, and H. Song. 2020. Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in situ coal seam. Energy 195:117005.
  • Liu, X., H. Z. Tan, X. B. Wang, Z. Wang, J. Y. Zhang, and Y. B. Wang. 2021. Effect of coal rank, oxygen level and particle size on oxidation reactivity of typical Chinese coals. Thermochim. Acta 696:178838.
  • Ma, L., C. Lei, and K. Wang. 2015. Impact of high ground temperature environment on limit parameters of coal spontaneous combustion. J. Coal. Sci. Eng 47:89–92. in Chinese.
  • Ma, R. 2015. Experiment study on critical temperature of coal spontaneous combustion and the influencing factors. Xi’an Univ. Sci. Technol (in Chinese).
  • Niu, Z., G. Liu, H. Yin, D. Wu, and C. Zhou. 2016. Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR. Fuel 172:1–10.
  • Onifade, M., and B. Genc. 2018. Spontaneous combustion of coals and coal-shales. Int. J. Min. Sci. Technol. 28:933–40. doi:10.1016/j.ijmst.2018.05.013.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 30:303–11.
  • Onifade, M., B. Genc, and S. Bada. 2020. Spontaneous combustion liability between coal seams: A thermogravimetric study. Int. J. Min. Sci. Technol. 30:691–98. doi:10.1016/j.ijmst.2020.03.006.
  • Painter, P. C., R. W. Snyder, M. Starsinic, M. M. Coleman, D. W. Kuehn, and A. Davis. 1981. Concerning the application of FT-IR to the study of coal: A critical assessment of band assignments and the application of spectral analysis programs. Appl. Spectrosc. 35 (5):475–85.
  • Pan, R. K., D. M. Hu, J. K. Chao, L. Wang, J. W. Ma, and H. L. Jia. 2020. The heat of wetting and its effect on coal spontaneous combustion. Thermochim. Acta 691:178711.
  • Panigrahi, D. C., and H. B. Sahu. 2004. Classification of coal seams with respect to their spontaneous heating susceptibility—A neural network approach. Geotech. Geol. Eng. 22:457–76.
  • Qi, X. Y., Q. Z. Li, H. J. Zhang, and H. H. Xin. 2017. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. J. Energy Inst. 90:544–55.
  • Ren, L., J. Deng, Q. Li, L. Ma, L. Zou, B. Laiwang, and C. Shu. 2019. Low-temperature exothermic oxidation characteristics and spontaneous combustion risk of pulverised coal. Fuel 252:238–45.
  • Riesser, B., M. Starsinic, E. Squires, A. Davis, and P. C. Painter. 1984. Determination of aromatic and aliphatic CH groups in coal by FT-i.r.: 2. Studies of coals and vitrinite concentrates. Fuel 63:1253–61.
  • Shen, J., H. Q. Zhu, M. G. Luo, and D. Liu. 2016. Numerical simulation of CO distribution discharged by flame-proof vehicle in underground tunnel of coal mine. J. Loss Prevent Proc. 40:117–21.
  • Song, Z., and C. Kuenzer. 2014. Coal fires in China over the last decade: A comprehensive review. Int. J. Coal Geol. 133:72–99.
  • Stracher, G. B., and T. P. Taylor. 2004. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. Int. J. Coal Geol. 59:7–17.
  • Su, H., F. Zhou, H. Qi, and J. Li. 2017. Design for thermoelectric power generation using subsurface coal fires. Energy 140:929–40.
  • Tahmasebi, A., J. Yu, Y. Han, and X. Li. 2012. A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air, Fuel Process. Technol 101:85–93.
  • Thilakaratne, R. A., B. J. Malig, and R. Basu. 2020. Examining the relationship between ambient carbon monoxide, nitrogen dioxide, and mental health-related emergency department visits in California, USA. Sci. Total Environ. 746:140915.
  • Wang, H. Y. 2015. The study of coal primal CO generation mechanism and adsorption, emission characteristics. China Univ. Min. Technol.
  • Wang, J. F., Y. L. Zhang, S. Xue, J. M. Wu, Y. Tang, and P. Chang. 2018. Assessment of spontaneous combustion status of coal based on relationships between oxygen consumption and gaseous product emissions. Fuel Process Technol 179:60–71.
  • Wang, K., Y. Z. He, H. H. Fan, and B. Shang. 2021. Study of the coal secondary spontaneous combustion behavior under different pre-heating oxygen concentrations. J. Therm. Anal. Calorim. 146:681–88. doi:10.1007/s10973-020-10036-y.
  • Wen, H., D. Zhang, Y. Xiao, and X. Z. Zheng. 2019. Experimental study on the influence of oil on spontaneous combustion characteristics of coal. Int. J. Oeil Gas Coal T. 21:357–74.
  • Wen, H., H. Wang, W. Y. Liu, and X. J. Cheng. 2020. Comparative study of experimental testing methods for characterization parameters of coal spontaneous combustion. Fuel 275:117880.
  • Xu, Q., S. Q. Yang, J. W. Cai, B. Z. Zhou, and Y. A. Xin. 2018. Risk forecasting for spontaneous combustion of coals at different ranks due to free radicals and functional groups reaction. Process S. Afr. Environ. 118:195–202.
  • Xu, Y. 2014. Research on macro featured parameters and test methods of coal spontaneous combustion character. Xi’an Univ. Sci. Technol (in Chinese).
  • Zhang, D., W. F. Wang, J. Deng, H. Wen, and X. W. Zhai. 2020a. Experimental study and application of LASC foamed concrete to create airtight walls in coal mines. Adv. Mater. Sci. Eng. 2020:1–11. doi:10.1155/2020/6804906.
  • Zhang, D., W. F. Wang, J. Deng, H. Wen, X. W. Zhai, and C. M. Shu. 2020b. Thermokinetic characteristics of Jurassic coal spontaneous combustion based on thermogravimetric analysis, Combust. Sci. Technol:1–15. doi:10.1080/00102202.2020.1821002.
  • Zhang, D., X. S. Yang, J. Deng, H. Wen, Y. Xiao, and H. Jia. 2021b. Research on coal spontaneous combustion period based on pure oxygen adiabatic oxidation experiment. Fuel 288:119651.
  • Zhang, D., X. X. Cen, W. F. Wang, J. Deng, H. Wen, Y. Xiao, and C. M. Shu. 2021a. The graded warning method of coal spontaneous combustion in Tangjiahui Mine. Fuel 288:119635.
  • Zhang, X., and Q. Li. 2014. Experiment study on spontaneous combustion characteristics of pre-oxidized coal. Coal Sci. Technol. 42 (2336):0253.
  • Zhang, Y. N., L. Chen, J. Y. Zhao, J. Deng, and H. Yang. 2019. Evaluation of the spontaneous combustion characteristics of coal of different metamorphic degrees based on a temperature-programmed oil bath experimental system. J. Loss Prevent. Proc. 60:17–27.
  • Zhang, Y. T., Y. B. Zhang, Y. Q. Li, Q. P. Li, J. Zhang, and C. P. Yang. 2020. Study on the characteristics of coal spontaneous combustion during the development and decaying processes. Process Saf. Environ. 138:9–17.
  • Zhao, J. P., G. F. Tang, Y. C. Wang, and Y. J. Han. 2020. Explosive property and combustion kinetics of grain dust with different particle sizes. Heliyon 6:e03457.
  • Zhao, J. Y., J. Deng, J. Song, and C. M. Shu. 2019a. Effectiveness of a high-temperature-programmed experimental system in simulating particle size effects on hazardous gas emissions in bituminous coal. Saf. Sci. 115:353–61.
  • Zhao, J. Y., J. Deng, T. Wang, J. Song, Y. Zhang, C. M. Shu, and Q. Zeng. 2019b. Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. Energy 169:587–96.
  • Zhao, J. Y., T. Wang, J. Deng, C. M. Shu, Q. Zeng, T. Guo, and Y. X. Zhang. 2020. Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR. Energy 209:118494.
  • Zhu, L. H., C. Zhao, and J. Dai. 2021. Prediction of compressive strength of recycled aggregate concrete based on gray correlation analysis. Constr. Build Mater 273 121750.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.