325
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental and Theoretical Research on the Radiative Heat Transfer Characteristics of Transformer Oil Jet Flame

ORCID Icon, , &
Pages 2240-2257 | Received 17 Sep 2021, Accepted 28 Nov 2021, Published online: 18 Dec 2021

References

  • Aktar, M. A., M. M. Alam, and A. Q. Al-Amin. 2021. Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19. Sustain. Prod. Consum. 26:770–81. doi:10.1016/j.spc.2020.12.029.
  • Andreev, O., O. Lomakina, and A. Aleksandrova. 2021. Diversification of structural and crisis risks in the energy sector of the ASEAN member countries. Energy Strategy Rev. 35.
  • Bagdadee, A. H., and L. Zhang. 2020. Electrical power crisis solution by the developing renewable energy based power generation expansion. Energy Rep 6:480–90. doi:10.1016/j.egyr.2019.11.106.
  • Beyler, C. L. 2016. Fire hazard calculations for large, open hydrocarbon fires. SFPE Handb. Fire Prot. Eng.
  • Bradley, D., P. H. Gaskell, X. Gu, and A. Palacios. 2016. Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates. Combust. Flame 164:400–09. doi:10.1016/j.combustflame.2015.09.009.
  • Ding, L., C. Gong, F. Ge, and J. Ji. 2021. Experimental study on flame radiation characteristic from line pool fires of n-heptane fuel in open space. Energy 218.
  • Dumitran, L. M., R. Setnescu, P. V. Notingher, L. V. Badicu, and T. Setnescu. 2014. Method for lifetime estimation of power transformer mineral oil. Fuel 117:756–62. doi:10.1016/j.fuel.2013.10.002.
  • Elgamal, G., M. M. Kamal, and A. M. Abdulaziz. 2013. Swirl and cross-flow effects on vitiated jet flames. Combust. Sci. Technol 185 (2):310–35. doi:10.1080/00102202.2012.718007.
  • Gómez-Mares, M., M. Muñoz, and J. Casal. 2010. Radiant heat from propane jet fires. Exp. Therm. Fluid Sci. 34 (3):323–29. doi:10.1016/j.expthermflusci.2009.10.024.
  • Gómez-Mares, M., L. Zárate, and J. Casal. 2008. Jet fires and the domino effect. Fire Saf. J. 43 (8):583–88. doi:10.1016/j.firesaf.2008.01.002.
  • Gui, Y., L. Xu, Z. Ding, L. Ran, X. Chen, and C. Tang. 2021. Co, Rh decorated GaNNTs for online monitoring of characteristic decomposition products in oil-immersed transformer. Appl. Surf. Sci. 561.
  • Hankinson, G., and B. J. Lowesmith. 2012. A consideration of methods of determining the radiative characteristics of jet fires. Combust. Flame 159 (3):1165–77. doi:10.1016/j.combustflame.2011.09.004.
  • Henderson, C. N., C. S. Defrance, P. Predecki, and M. Kumosa. 2019. Damage prevention in transformer bushings subjected to high-velocity impact. Int. J. Impact. Eng. 130:1–10. doi:10.1016/j.ijimpeng.2019.03.007.
  • Hu, L., Q. Wang, M. Delichatsios, S. Lu, and F. Tang. 2014. Flame radiation fraction behaviors of sooty buoyant turbulent jet diffusion flames in reduced- and normal atmospheric pressures and a global correlation with Reynolds number. Fuel 116:781–86. doi:10.1016/j.fuel.2013.08.059.
  • Imamura, T., S. Hamada, T. Mogi, Y. Wada, S. Horiguchi, A. Miyake, and T. Ogawa. 2008. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region. Int. J. Hydrogen Energy 33 (13):3426–35. doi:10.1016/j.ijhydene.2008.03.063.
  • Kamal, M. M. 2008a. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor. Combust. Sci. Technol. 181 (1):136–58. doi:10.1080/00102200802483597.
  • Kamal, M. M. 2008b. Combustion in a cross flow with air jet nozzles. Combust. Sci. Technol. 181 (1):78–96. doi:10.1080/00102200802381429.
  • Kamal, M. M. 2012. Development of a multiple opposing jets’ burner for premixed flames. Proc. Inst. Mech. Eng. Part A 226:1032–49.
  • Kang, S. H. 2021. Effects of flame temperature and absorption coefficient on premixed flame interactions with radiation. J. Therm. Sci. 30 (3):1046–56. doi:10.1007/s11630-021-1393-8.
  • Kang, Y., Q. Wang, X. Lu, X. Ji, H. Wang, Q. Guo, Y. Chen, J. Yan, and J. Zhou. 2015. Experimental and theoretical study on radiative heat transfer characteristics of dimethyl ether jet diffusion flame. Fuel 158:684–96. doi:10.1016/j.fuel.2015.06.015.
  • Kozanoglu, B., L. Zarate, M. Gomez-Mares, and J. Casal. 2011. Convective heat transfer around vertical jet fires: An experimental study. J. Hazard. Mater. 197:104–08. doi:10.1016/j.jhazmat.2011.09.057.
  • Kumar, B. P., and A. Kumar. 2021. Effects of thermal radiation on near-limit flame spread in a low convective microgravity environment. Combust. Theory Modelling 25 (5):889–910. doi:10.1080/13647830.2021.1959069.
  • Laboureur, D. M., N. Gopalaswami, B. Zhang, Y. Liu, and M. S. Mannan. 2016. Experimental study on propane jet fire hazards: Assessment of the main geometrical features of horizontal jet flames. J Loss Prev. Process Ind. 41:355–64. doi:10.1016/j.jlp.2016.02.013.
  • Liu, J., X. Zhang, and Q. Xie. 2019. Flame geometrical characteristics of downward sloping buoyant turbulent jet fires. Fuel 257.
  • Lowesmith, B. J., and G. Hankinson. 2012. Large scale high pressure jet fires involving natural gas and natural gas/hydrogen mixtures. Process Saf. Environ. Prot. 90 (2):108–20. doi:10.1016/j.psep.2011.08.009.
  • Lowesmith, B. J., and G. Hankinson. 2013. Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures. Process Saf. Environ. Prot. 91 (1–2):101–11. doi:10.1016/j.psep.2012.03.004.
  • Lowesmith, B. J., G. Hankinson, M. R. Acton, and G. Chamberlain. 2007. An overview of the nature of hydrocarbon jet fire hazards in the oil and gas industry and a simplified approach to assessing the hazards. Process Saf. Environ. Prot. 85 (3):207–20. doi:10.1205/psep06038.
  • Mashhadimoslem, H., A. Ghaemi, A. Palacios, and A. Hossein Behroozi. 2020. A new method for comparison thermal radiation on large-scale hydrogen and propane jet fires based on experimental and computational studies. Fuel 282.
  • Mogi, T., H. Shiina, Y. Wada, and R. Dobashi. 2011. Experimental study on the hazards of the jet diffusion flame of liquefied dimethyl ether. Fuel 90 (7):2508–13. doi:10.1016/j.fuel.2011.03.026.
  • Mudan, K. S. 1987. Geometric view factors for thermal radiation hazard assessment. Fire Saf. J. 12 (2):89–96. doi:10.1016/0379-7112(87)90024-5.
  • Otsu, N. 1975. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1:62–66.
  • Palacios, A., and J. Casal. 2011. Assessment of the shape of vertical jet fires. Fuel 90 (2):824–33. doi:10.1016/j.fuel.2010.09.048.
  • Palacios, A., W. García, and B. Rengel. 2020. Flame shapes and thermal fluxes for an extensive range of horizontal jet flames. Fuel 279.
  • Palacios, A., M. Muñoz, R. M. Darbra, and J. Casal. 2012. Thermal radiation from vertical jet fires. Fire Saf. J. 51:93–101. doi:10.1016/j.firesaf.2012.03.006.
  • Palacios, A., and B. Rengel. 2020. Flame shapes and thermal flux of vertical hydrocarbon flames. Fuel 276.
  • Radiation and size scaling of large gas and gas/oil diffusion flames. 1986. Dynamics of Reactive Systems Part I: Flames and Configurations; Part II: Modeling and Heterogeneous Combustion.
  • Rengel, B., A. Àgueda, E. Pastor, J. Casal, E. Planas, L. Hu, and A. Palacios. 2020. Experimental and computational analysis of vertical jet fires of methane in normal and sub-atmospheric pressures. Fuel 265.
  • Schefer, R. W., W. G. Houf, T. C. Williams, B. Bourne, and J. Colton. 2007. Characterization of high-pressure, underexpanded hydrogen-jet flames. Int. J. Hydrogen Energy 32 (12):2081–93. doi:10.1016/j.ijhydene.2006.08.037.
  • Shokri, M., and C. L. Beyler. 1989. Radiation from large pool fires. J. Fire Prot. Eng. 1 (4):141–49. doi:10.1177/104239158900100404.
  • Studer, E., D. Jamois, S. Jallais, G. Leroy, J. Hebrard, and V. Blanchetière. 2009. Properties of large-scale methane/hydrogen jet fires. Int. J. Hydrogen Energy 34 (23):9611–19. doi:10.1016/j.ijhydene.2009.09.024.
  • Suris, A. L. F. E. 1978. Length of free diffusion flames. Combust. Explos. Shock Waves 4:459–62. doi:10.1007/BF00744792.
  • Wang, C. J., J. X. Wen, Z. B. Chen, and S. Dembele. 2014. Predicting radiative characteristics of hydrogen and hydrogen/methane jet fires using FireFOAM. Int. J. Hydrogen Energy 39 (35):20560–69. doi:10.1016/j.ijhydene.2014.04.062.
  • Wang, Z., K. Jiang, K. Zhao, and P. Guo. 2021. Macroscopic characteristics and prediction model of horizontal extension length for syngas jet flame under inclined conditions. Int. J. Hydrogen Energy 46 (44):23091–99. doi:10.1016/j.ijhydene.2021.04.118.
  • Wiseman, S. M., M. J. Brear, R. L. Gordon, and I. Marusic. 2017. Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames. Combust. Flame 183:1–14. doi:10.1016/j.combustflame.2017.05.003.
  • Yang, Z., A. Adeosun, B. M. Kumfer, and R. L. Axelbaum. 2017. An approach to estimating flame radiation in combustion chambers containing suspended-particles. Fuel 199:420–29. doi:10.1016/j.fuel.2017.02.083.
  • Zhang, B., Y. Liu, D. Laboureur, and M. S. Mannan. 2015. Experimental study on propane jet fire hazards: Thermal radiation. Ind Eng Chem Res 54 (37):9251–56. doi:10.1021/acs.iecr.5b02064.
  • Zhang, Q.-X., D. Liang, and J. Wen. 2019. Experimental study of flashing LNG jet fires following horizontal releases. J Loss Prev. Process Ind. 57:245–53. doi:10.1016/j.jlp.2018.12.007.
  • Zhao, J., S. Wang, J. Zhang, R. Zhou, and R. Yang. 2020. Experimental study on the burning characteristics of transformer oil pool fires. Energy Fuels 34 (4):4967–76. doi:10.1021/acs.energyfuels.0c00175.
  • Zhou, K., and J. Jiang. 2016. Thermal radiation from vertical turbulent jet flame: Line source model. J. Heat Transfer 138.
  • Zhou, K., J. Liu, and J. Jiang. 2016. Prediction of radiant heat flux from horizontal propane jet fire. Appl. Therm. Eng. 106:634–39. doi:10.1016/j.applthermaleng.2016.06.063.
  • Zhou, K., X. Qin, Z. Wang, X. Pan, and J. Jiang. 2018a. Generalization of the radiative fraction correlation for hydrogen and hydrocarbon jet fires in subsonic and chocked flow regimes. Int. J. Hydrogen Energy 43 (20):9870–76. doi:10.1016/j.ijhydene.2018.03.201.
  • Zhou, K., X. Wang, M. Liu, and J. Liu. 2018b. A theoretical framework for calculating full-scale jet fires induced by high-pressure hydrogen/natural gas transient leakage. Int. J. Hydrogen Energy 43 (50):22765–75. doi:10.1016/j.ijhydene.2018.10.122.
  • Zhou, K., Y. Wang, L. Zhang, Y. Wu, X. Nie, and J. Jiang. 2020. Effect of nozzle exit shape on the geometrical features of horizontal turbulent jet flame. Fuel 260.
  • Zhou, Z., G. Chen, C. Zhou, K. Hu, and Q. Zhang. 2019. Experimental study on determination of flame height and lift-off distance of rectangular source fuel jet fires. Appl. Therm. Eng. 152:430–36. doi:10.1016/j.applthermaleng.2019.02.094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.