509
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Fire whirls: A Combustion Science Perspective

, , , &
Pages 3003-3020 | Received 28 Feb 2021, Accepted 12 Dec 2021, Published online: 03 Jan 2022

References

  • Battaglia, F., K. B. McGrattan, R. G. Rehm, and H. R. Baum. 2000. Simulating fire whirls. Combust. Theory Modell 4:123–38.
  • Burke, S. P., and T. E. W. Schumann. 1928. Diffusion flames. Ind. Eng. Chem 20:998–1004.
  • Byram, G. M., and R. E. Martin. 1962. Fire whirlwind in the laboratory. Fire Control Notes 23:13–17.
  • Byram, G. M., and R. E. Martin. 1970. The modeling of fire whirlwinds. For. Sci. 16:386–99.
  • Carpio, J., W. Coenen, A. L. Sánchez, E. Oran, and F. A. Williams. 2021. Numerical description of axisymmetric blue whirls over liquid-fuel pools. Proc. Combust. Inst. (in press) 38:2041-2048.
  • Carslaw, H. S., and J. C. Jaeger. 1986. Conduction of heat in solids. 2nd ed. New York: Oxford University Press.
  • Chigier, N. A., J. M. Beér, D. Grecov, and K. Bassindale. 1970. Jet flames in rotating flow fields. Combust. Flame 14:171–79.
  • Chow, W. K., Z. He, and Y. Gao. 2011. Internal fire whirls in a vertical shaft. J. Fire Sci 29:71–92.
  • Chuah, K. H., and G. Kushida. 2007. The prediction of flame heights and flame shapes of small fire whirls. Proc. Combust. Inst 31:2599–606.
  • Chuah, K. H., K. Kuwana, and K. Saito. 2009. Modeling a fire whirl generated over a 5-cm-diameter methanol pool fire. Combust. Flame 156:1828–33.
  • Chuah, K. H., K. Kuwana, K. Saito, and F. A. Williams. 2011. Inclined fire whirls. Proc. Combust. Inst 33:2417–24.
  • Chung, J. D., X. Zhang, C. R. Kaplan, and E. S. Oran. 2020. The structure of the blue whirl revealed. Sci. Adv. 6:eaba0827.
  • Coenen, W., E. J. Kolb, A. L. Sánchez, and F. A. Williams. 2019. Observed dependence of characteristics of liquid-pool fires on swirl magnitude. Combust. Flame 205:1–6.
  • Davies-Jones, R. P. 1982. Tornado dynamics. Thunderstorms: A social, scientific, & technological documentary, E. Kessler. ed., Vol. 2. 297–361. Washington, DC: National Oceanic and Atmospheric Administration.
  • Dessens, J., Jr. 1972. Influence of ground roughness on tornadoes: A laboratory simulation. J. Appl. Meteorol 11:72–75.
  • Dobashi, R., T. Okura, R. Nagaoka, Y. Hayashi, and T. Mogi. 2016. Experimental study on flame height and radiant heat of fire whirls. Fire Technol. 52:1069–80.
  • Emmons, H. W., and S. J. Ying. 1967. The fire whirl. Proc. Combust. Inst 11:475–88.
  • Emori, R. I., and K. Saito. 1982. Model experiment of hazardous forest fire whirl. Fire Technol. 18:319–27.
  • Forthofer, J. M., and S. L. Goodrick. 2011. Review of vortices in wildland fire. J. Combust 2011:984363.
  • Graham, H. E. 1955. Fire whirlwinds. Bull. Am. Meteorol. Soc 36:99–103.
  • Hariharan, S. B., E. T. Sluder, M. J. Gollner, and E. S. Oran. 2019. Thermal structure of the blue whirl. Proc. Combust. Inst 37:4285–93.
  • Hartl, K. A., and A. J. Smits. 2016. Scaling of a small scale burner fire whirl. Combust. Flame 163:202–08.
  • Hassan, M. I., K. Kuwana, K. Saito, and F. Wang 2005. Flow structure of a fixed-frame type fire whirl. In D. T. Gottuk, and B. Y. Lattimer (Eds.), Fire Safety Science—Proceedings of the Eighth International Symposium, International Association for Fire Safety Science, Beijing, China, pp. 671–80.
  • Hayashi, Y., K. Kuwana, and R. Dobashi 2011. Influence of vortex structure on fire whirl behavior. In M. Spearpoint (Ed.), Fire Safety Science—Proceedings of the Tenth International Symposium, International Association for Fire Safety Science, College Park, MD, pp. 671–80.
  • Hayashi, Y., K. Kuwana, T. Mogi, and R. Dobashi. 2013. Influence of vortex parameters on the flame height of a weak fire whirl via heat feedback mechanism. J. Chem. Eng. Jpn 46:689–94.
  • Himoto, K., and T. Naruse. 2017. Probabilistic aspect of fire whirl generation around an L-shaped fire source in a crosswind. Fire Saf. J 88:89–95.
  • Hu, Y., S. B. Hariharan, H. Qi, M. J. Gollner, and E. S. Oran. 2019. Conditions for formation of the blue whirl. Combust. Flame 205:147–53.
  • Huang, S. L., H. C. Chen, C. C. Chu, and C. C. Chang. 2008. On the transition process of a swirling vortex generated in a rotating tank. Exp. Fluids 45:267–82.
  • Iga, Y., Kuwana, K., Sekimoto, K., and Nakamura, Y. 2021. Open-field scale-model experiments of fire whirls over L-shaped line fires. Progress in Scale Modeling, an International Journal 2: 02-02-07 https://doi.org/10.13023/psmij.2021.02-02-07 doi:10.13023/psmij.2021.02-02-07
  • Klimenko, A. Y., and F. A. Williams. 2013. On the flame length in firewhirls with strong vorticity. Combust. Flame 160:335–39.
  • Kuwana, K., K. Sekimoto, K. Saito, and F. A. Williams. 2008. Scaling fire whirls. Fire Saf. J 43:252–57.
  • Kuwana, K., K. Sekimoto, K. Saito, F. A. Williams, Y. Hayashi, and H. Masuda. 2007. Can we predict the occurrence of extreme fire whirls? AIAA J. 45:16–19.
  • Kuwana, K., K. Sekimoto, T. Minami, T. Tashiro, and K. Saito. 2013. Scale-model experiments of moving fire whirl over a line fire. Proc. Combust. Inst 34:2625–31.
  • Kuwana, K., S. Morishita, R. Dobashi, K. H. Chuah, and K. Saito. 2011. The burning rate’s effect on the flame length of weak fire whirls. Proc. Combust. Inst 33:2425–32.
  • Kuwana, K. 2019. Fire whirls: Why are they tall, and when do they occur? J. Combust. Soc. Jpn 61:101–11. (in Japanese).
  • Lei, J., N. Liu, L. Zhang, H. Chen, L. Shu, P. Chen, Z. Deng, J. Zhu, K. Satoh, and J. L. de Ris. 2011. Experimental research on combustion dynamics of medium-scale fire whirl. Proc. Combust. Inst 33:2407–15.
  • Lei, J., N. Liu, L. Zhang, Z. Deng, N. K. Akafuah, T. Li, K. Saito, and K. Satoh. 2012. Burning rates of liquid fuels in fire whirls. Combust. Flame 159:2104–14.
  • Lei, J., N. Liu, and R. Tu. 2017a. Flame height of turbulent fire whirls: A model study by concept of turbulence suppression. Proc. Combust. Inst 36:3131–38.
  • Lei, J., N. Liu, Y. Jiao, and S. Zhang. 2017b. Experimental investigation on flame patterns of buoyant diffusion flame in a large range of imposed circulations. Proc. Combust. Inst 36:3149–56.
  • Li, S., Q. Yao, and C. K. Law. 2019. The bottom boundary-layer structure of fire whirls. Proc. Combust. Inst 37:4277–84.
  • Liñán, A., and F. A. Williams. 1993. Fundamental aspects of combustion. New York: Oxford University Press.
  • Liu, N., J. Lei, W. Gao, H. Chen, and X. Xie. 2021. Combustion dynamics of large-scale wildfires. Proc. Combust. Inst. (in press) 38:157-198.
  • Liu, N., Q. Liu, Z. Deng, K. Satoh, and J. Zhu. 2007. Burn-out time data analysis on interaction effects among multiple fires in fire arrays. Proc. Combust. Inst 31:2589–97.
  • Liu, Z., N. Liu, J. Lei, X. Miao, L. Zhang, and D. X. Viegas. 2021. Evolution from conical to cylindrical fire whirl: An experimental study. Proc. Combust. Inst. (in press) 38:4579-4586.
  • Muraszew, A., J. B. Fedele, and W. C. Kuby. 1977. Trajectory of firebrnds in and out of fire whirls. Combust. Flame 30:321–24.
  • Parente, R. M., J. M. C. Pereira, and J. C. F. Pereira. 2019. On the influence of circulation on fire whirl height. Fire Saf. J 106:146–54.
  • Quintiere, J. G. 2020. Scaling realistic fire scenarios. Prog. Scale Model. Int. J. 1 (Article 1):1–19.
  • Roper, F. G. 1977. The prediction of laminar jet diffusion flame sizes: Part I. theoretical model. Combust. Flame 29:219–26.
  • Sasaki, T., M. Igari, and K. Kuwana. 2018. Fire whirls behind an L-shaped wall in a crossflow. Combust. Flame 197:197–203.
  • Satoh, K., and K. T. Yang 1996. Experimental observations of swirling fires. In, Proceedings of the ASME Heat Transfer Division, ASME, Atlanta, GA, pp. 393–400.
  • Shinohara, M., and S. Matsushima. 2012. Formation of fire whirls: Experimental verification that a counter-rotating vortex pair is a possible origin of fire whirls. Fire Saf. J 54:144–53.
  • Soma, S., and K. Saito. 1991. Reconstruction of fire whirls using scale models. Combust. Flame 86:269–84.
  • Sullivan, R. D. 1959. A two-cell vortex solution of the Navier-Stokes equations. J. Aerosp. Sci 26:767–68.
  • Thomas, P. H. 1963. The size of flames from natural fires. Proc. Combust. Inst 9:844–59.
  • Tohidi, A., M. J. Gollner, and H. Xiao. 2018. Fire whirls. Annu. Rev. Fluid Mech 50:187–213.
  • Weiss, A. D., P. Rajamanickam, W. Coenen, A. L. Sánchez, and F. A. Williams. 2020. A model for the constant-density boundary layer surrounding fire whirls. J. Fluid Mech 900:A22.
  • Williams, F. A. 2020. Scaling considerations for fire whirls. Prog. Scale Model. Int. J. 1 (Article 2):1–4.
  • Xiao, H., M. J. Gollner, and E. S. Oran. 2016. From fire whirls to blue whirls and combustion with reduced pollution. Proc. Natl. Acad. Sci. U.S.A. 113:9457–62.
  • Zhou, K., N. Liu, and X. Yuan. 2016. Effect of wind on fire whirl over a line fire. Fire Technol. 52:865–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.