104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Recovery of Light Oil by using Combustion Tube: An Experimental Analysis

, &
Pages 2442-2455 | Received 23 Nov 2021, Accepted 13 Dec 2021, Published online: 21 Dec 2021

References

  • Akin, S., S. Bagci, and M. V. Kok. 2002. Experimental and numerical analysis of dry forward combustion with diverse well configuration. Energy and Fuels 16 (4):892–903. doi:10.1021/ef010172x.
  • Al-Saffar, H. B., H. Hasanin, D. Price, and R. Hughes. 2001. Oxidation reactions of a light crude oil and its SARA fractions in consolidated cores. Energy and Fuels 15 (1):182–88. doi:10.1021/ef000135q.
  • Basfar, A. A., O. I. Fageeha, N. Kunnummal, S. Al-Ghamdi, A. G. Chmielewski, J. Licki, A. Pawelec, B. Tymiński, and Z. Zimek. 2008. Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels. Fuel 87 (8–9):1446–52. doi:10.1016/j.fuel.2007.09.005.
  • Belgrave, J. D. M., R. G. Moore, M. G. Ursenbach, and D. W. A. Bennion. 1990. Comprehensive approach to in-situ combustion modeling. SPE Adv. Technol. Ser. 1 (1):98–107. doi:10.2118/20250-PA.
  • Butler, R. G. 1991. Thermal recovery of oil and bitumen, 415–26. New Jersey: Prentice hall.
  • Cinar, M., B. Hascakir, L. M. Castanier, and A. R. Kovscek. 2011. Predictability of crude oil in-situ combustion by the isoconversional kinetic approach. SPE. Journal. 16 (3):537–47. doi:10.2118/148088-PA.
  • Fassihi, M. R., D. V. Yannimaras, and V. K. Kumar. 1997. Estimation of recovery factors in light–oil air–injection projects. SPE Reservoir Engg. 12 (3):173–78. doi:10.2118/28733-PA.
  • Greaves, M., T. J. Young, S. El-Usta, R. R. Rathbone, S. R. Ren, and T. X. Xia. 2000. Air injection into light and medium heavy oil reservoirs: Combustion tube studies on West of shetlands Clair oil and light Australian oil. Chem. Eng. Res. Des. 78 (5):721–30. doi:10.1205/026387600527905.
  • Hamdy, M., M. Mahmoud, O. Aladeb, and E. M. A. Mokheimer. 2020. Numerical Study of Enhanced Oil Recovery Using In Situ Oxy-Combustion in a Porous Combustion Tube. J. Energy Resour. Technol. 142 (12):122305–14. doi:10.1115/1.4047308.
  • Hu, J., J. Z. Zhao, W. F. Pu, J. Zhao, and X. Y. Kuang. 2012. Thermal study on light crude oil for application of High-Pressure Air Injection (HPAI) process by TG/DTG and DTA tests. Energy & Fuels 26 (3):1575–84. doi:10.1021/ef201770t.
  • Indrijarso, S., J. S. Oklany, A. Millington, D. Price, and R. Hughes. 1996. Thermogravimetric studies of systems pertinent to the in situ combustion process for enhanced oil recovery. Part1. Development of a high–pressure thermobalance. Thermochim Acta. 277 (1–2):41–52. doi:10.1016/0040-6031(95)02771-8.
  • Kaye, S. E., V. C. Ting, and J. C. Fair. 1982. Development of a system to utilize flue gas from enhanced oil recovery combustion projects. J. Pet. Technol. 34 (1):181–88. doi:10.2118/8360-PA.
  • Kisler, J. P., and D. C. Shallcross. 1997. an improved model for the oxidation processes of light crude oil. Chem. Eng. Res. Des. 75 (4):392–400. doi:10.1205/026387697523859.
  • Kok, M. V., J. Sztatisz, and G. Pokol. 1997. High-Pressure DSC applications on crude oil combustion. Energy and Fuels 11 (6):1137–42. doi:10.1021/ef970015r.
  • Kok, M. V., O. Karacan, and R. Pamir. 1998. Kinetic analysis of oxidation behavior of crude oil SARA constituents. Energy and Fuels 12 (3):580–88. doi:10.1021/ef970173i.
  • Li, J., S. Mehta, R. Moore, and M. Ursenbach. 2009. New insights into oxidation behaviours of crude oils. J. Can. Petrol. Technol. 48 (9):12–15. doi:10.2118/09-09-12-TN.
  • Mamora, D. D., H. J. Ramey Jr., W. E. Brigham, and L. M. Castanier 1993. Kinetics of in situ combustion; Technical Report for U.S. Department of Energy and Assistant Secretary for Fossil Energy: Stanford University.
  • Niu, B., S. Ren, Y. Liu, D. Wang, L. Tang, B. Chen, J. D. M. Belgrave, R. G. Moore, M. G. Ursenbach, and D. W. Bennion. 2011. Low-temperature oxidation of oil components in an air injection process for improved oil recovery. Energy Fuels 25 (10):4299–304. doi:10.1021/ef200891u.
  • Paurola, P., H. Vindspoll, K. V. Grande, and K. H. Hofstad. 2016. In situ combustion process with reduced CO2 Emissions, U.S. Patent No. 9470077.
  • Pu, W. F., C. D. Yuan, F. Y. Jin, L. Wang, Z. Qian, Y. B. Li, Y. F. Chen, and Y.-F. Chen. 2015. Low-temperature oxidation and characterization of heavy oil via thermal analysis. Energy & Fuels 29 (2):1151–59. doi:10.1021/ef502135e.
  • Ruidas, B. C., and S. Ganguly. 2015. In situ combustion of light oil: Stoichiometric, kinetic, and thermodynamic analyses from the flow experiments. Combust. Sci. Technol. 187 (10):1542–61. doi:10.1080/00102202.2015.1050553.
  • Santos, J. M., A. Vetere, A. Wisniewski Jr., M. N. Eberlin, and W. Schrader. 2018. Comparing crude oils with different API gravities on a molecular level using mass spectrometric analysis. Part 2: Resins and asphaltenes. Energies 11 (10):2767. doi:10.3390/en11102767.
  • Turta, A. T., and A. K. Singhal. 2001. reservoir engineering aspects of light–oil recovery by air injection. SPE. Reserv. Eng. 4 (4):336–43. doi:10.2118/72503-PA.
  • Vossoughi, S., G. W. Bartlett, and G. P. Willhite. 1985. Prediction of In situ combustion process variables by use of TGA/DSC techniques and the effect of sand-grain specific surface area on the process. Soc. Pet. Eng. J. 25 (5):656–64. doi:10.2118/11072-PA.
  • Vossoughi, S., G. Willhite, Y. El-Shoubary, and G. Bartlett. 1983. Study of the clay effect on crude oil combustion by thermogravimetry and differential scanning calorimetry. Journal of Thermal Analysis 27 (1):17–36. doi:10.1007/BF01907318.
  • Yoshiki, K. S., and C. R. Phillips. 1985. Kinetics of the thermo-oxidative and thermal cracking reactions of Athabasca Bitumen. Fuel 64 (11):1591–98. doi:10.1016/0016-2361(85)90377-1.
  • Zhao, R., Y. Chen, R. Huan, L. M. Castanier, and A. R. Kovscek. 2015. An experimental investigation of the in-situ combustion behavior of Karamay crude oil. J. Pet. Sci. Eng. 127:82–92. doi:10.2118/165337-MS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.