284
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design Novel Environmentally-friendly Flame Retardants

, , , &
Pages 2474-2490 | Received 24 Aug 2021, Accepted 16 Dec 2021, Published online: 05 Jan 2022

References

  • Abas, N., A. R. Kalair, N. Khan, A. Haider, Z. Saleem, and M. S. Saleem. 2018. Natural and synthetic refrigerants, global warming: A review. Renew. Sust. Energ. Rev. 90:557–69. doi:10.1016/j.rser.2018.03.099.
  • Cheng, X., Y. Wu, Y. Huang, J. Jiang, J. Xu, and J. Guan. 2020. Synthesis of a reactive boron-based flame retardant to enhance the flame retardancy of silk. React. Funct. Polym. 156:104731. doi:10.1016/j.reactfunctpolym.2020.104731.
  • Choi, B. C., J. S. Park, and A. F. Ghoniem. 2016. Characteristics of outwardly propagating spherical flames of R134a (C2H2F4)/CH4/O2/N2 mixtures in a constant volume combustion chamber. Energy 95:517–27. doi:10.1016/j.energy.2015.11.043.
  • Choi, J. H., W. J. Lee, S. K. Park, J. Kim, and B. C. Choi. 2019. Experimental study on the flame propagation behaviors of R245fa (C3H3F5)/CH4/O2/N2 mixtures in a constant volume combustion chamber. Exp. Therm. Fluid Sci. 101:276–82. doi:10.1016/j.expthermflusci.2018.10.030.
  • Covaci, A., S. Harrad, M. A. E. Abdallah, N. Ali, R. J. Law, D. Herzke, and C. A. de Wit. 2011. Novel brominated flame retardants: A review of their analysis. Environ. Int. 37:532–56. doi:10.1016/j.envint.2010.11.007.
  • Covaci, A., S. Voorspoels, L. Ramos, H. Neels, and R. Blust. 2007. Recent developments in the analysis of brominated flame retardants and brominated natural compounds. J. Chromatogr. A 1153:145–71. doi:10.1016/j.chroma.2006.11.060.
  • Destefano, A. J., R. J. Roby, and R. F. Porter. 1976. A thermodynamic study of H-D exchange in the hydrogen-difluoroborane system. Thermochim. Acta 16:236–39. doi:10.1016/0040-6031(76)85062-9.
  • Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al. 2016. Gaussian 16, Revision B.01. Wallingford, CT: Gaussian, Inc.
  • Fu, Z., H. Wang, X. Zhao, X. Li, X. Gu, and Y. Li. 2019. Flame-retarding nanoparticles as the compatibilizers for immiscible polymer blends: Simultaneously enhanced mechanical performance and flame retardancy. J. Mater. Chem. A 7:4903–12. doi:10.1039/C8TA12233D.
  • Gonzalez, C., and H. B. Schlegel. 1989. An improved algorithm for reaction path following. J. Chem. Phys. 90:2154–61. doi:10.1063/1.456010.
  • Hogue, C. 2013. Global ban for flame retardant. Chem. Eng. News 91:6. doi:10.1021/cen-09119-notw3.
  • Kasaeian, A., S. M. Hosseini, M. Sheikhpour, O. Mahian, W. M. Yan, and S. Wongwises. 2018. Applications of eco-friendly refrigerants and nanorefrigerants: A review. Renew. Sust. Energ. Rev. 96:91–99. doi:10.1016/j.rser.2018.07.033.
  • Kondo, S., Y. Urano, K. Tokuhashi, A. Takahashi, and K. Tanaka. 2001. Prediction of flammability of gases by using F-number analysis. J. Hazard. Mater. 82:113–28. doi:10.1016/S0304-3894(00)00358-7.
  • Li, X., Y. Feng, C. Chen, Y. Ye, H. Zeng, H. Qu, J. Liu, X. Zhou, S. Long, and X. Xie. 2018. Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. J. Mater. Chem. A 6:20500–12. doi:10.1039/C8TA08008A.
  • Li, Z., M. Gong, J. Wu, and Y. Zhou. 2009. Comparison of dilution effects of R134a and nitrogen on flammable hydrofluorocarbons. J. Therm. Sci. 18:377. doi:10.1007/s11630-009-0377-x.
  • Ling, S., K. Huang, M. Tariq, Y. Wang, X. Chen, W. Zhang, K. Lin, and B. Zhou. 2019. Photodegradation of Novel Brominated Flame Retardants (NBFRs) in a liquid system: Kinetics and photoproducts. Chem. Eng. J. 362:938–46. doi:10.1016/j.cej.2019.01.103.
  • Lu, T., and F. Chen. 2012. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33:580–92. doi:10.1002/jcc.22885.
  • Ma, C., J. Yu, B. Wang, Z. Song, J. Xiang, S. Hu, S. Su, and L. Sun. 2016. Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review. Renew. Sust. Energ. Rev. 61:433–50. doi:10.1016/j.rser.2016.04.020.
  • Murray, J. S., P. Lane, T. Brinck, K. Paulsen, M. E. Grice, and P. Politzer. 1993. Relationships of critical constants and boiling points to computed molecular surface properties. J. Chem. Phys. 97:9369–73. doi:10.1021/j100139a019.
  • Needham, C. D., and P. R. Westmoreland. 2017. Combustion and flammability chemistry for the refrigerant HFO-1234yf (2,3,3,3-tetrafluroropropene). Combust. Flame 184:176–85. doi:10.1016/j.combustflame.2017.06.004.
  • Noto, T., V. Babushok, D. R. Burgess, A. Hamins, W. Tsang, and A. Miiolek. 1996. Effect of halogenated flame inhibitors on C1−C2 organic flames. Symp. (Int.) Combus. 26:1377–83. doi:10.1016/S0082-0784(96)80357-2.
  • Otake, M., H. Mukaiyama, K. Sato, K. Sekigami, and K. Shikichi 2005. Refrigerator US20050279126A1.
  • Pagliaro, J. L., N. Bouvet, and G. T. Linteris. 2016. Premixed flame inhibition by CF3Br and C3H2F3Br (2-BTP). Combust. Flame 169:272–86. doi:10.1016/j.combustflame.2016.04.017.
  • Papas, P., S. Zhang, W. Kim, S. P. Zeppieri, M. B. Colket, and P. Verma. 2017. Laminar flame speeds of 2,3,3,3-tetrafluoropropene mixtures. Proc. Combust. Inst. 36:1145–54. doi:10.1016/j.proci.2016.06.073.
  • Rattley, M. 2012. Ambiguous bromine. Nat. Chem. 4:512. doi:10.1038/nchem.1361.
  • Takahashi, F., V. R. Katta, G. T. Linteris, and V. I. Babushok. 2015. Combustion inhibition and enhancement of cup-burner flames by CF3Br, C2HF5, C2HF3Cl2, and C3H2F3Br. Proc. Combust. Inst. 35:2741–48. doi:10.1016/j.proci.2014.05.114.
  • Xi, H., M. J. Li, Y. L. He, and Y. W. Zhang. 2017. Economical evaluation and optimization of organic Rankine cycle with mixture working fluids using R245fa as flame retardant. Appl. Therm. Eng. 113:1056–70. doi:10.1016/j.applthermaleng.2016.11.059.
  • Yang, Z., B. Liu, and H. B. Zhao. 2004. Experimental study of the inert effect of R134a and R227ea on explosion limits of the flammable refrigerants. Exp. Therm. Fluid Sci. 28:557–63. doi:10.1016/j.expthermflusci.2003.06.005.
  • Yang, Z., X. Wu, and J. Peng. 2013. Theoretical and experimental investigation on the flame-retarding characteristic of R245fa. Exp. Therm. Fluid Sci. 44:613–19. doi:10.1016/j.expthermflusci.2012.08.025.
  • Yu, Z., M. Mao, S. Li, Q. Xia, C. Cao, L. Zhao, G. Zhang, Z. Zheng, J. Gao, and L. Tang. 2021. Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chem. Eng. J. 405:126620. doi:10.1016/j.cej.2020.126620.
  • Zhang, L., Q. Wang, R. Jian, and D. Wang. 2020. Bioinspired iron-loaded polydopamine nanospheres as green flame retardants for epoxy resin via free radical scavenging and catalytic charring. J. Mater. Chem. A 8:2529. doi:10.1039/C9TA11021F.
  • Zhao, Y., and D. G. Truhlar. 2008. Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 4:1849–68. doi:10.1021/ct800246v.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.