200
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Toluene Content on Soot Particle Morphology and Evolution in Coflow Diffusion Flames of Diesel Surrogate Fuels

, , , &
Pages 2536-2555 | Received 02 Dec 2021, Accepted 30 Dec 2021, Published online: 10 Jan 2022

References

  • Alexiou, A., and A. Williams. 1995. Soot formation in shock-tube pyrolysis of toluene-n-heptane and toluene-iso-octane mixtures. Fuel 74 (2):153–58. doi:10.1016/0016-2361(95)92648-p.
  • An, Y., S. Teng, X. Li, J. Qin, and J. Zhong. 2016. Study of polycyclic aromatic hydrocarbons evolution processing in GDI engines using TRF-PAH chemical kinetic mechanism. SAE 2016 World Congress and Exhibition. doi:10.4271/2016-01-0690.
  • An, Y., Y. Pei, J. Qin, H. Zhao, S. Teng, B. Li, and X. Li. 2016. Development of a PAH (polycyclic aromatic hydrocarbon) formation model for gasoline surrogates and its application for GDI (gasoline direct injection) engine CFD (computational fluid dynamics) simulation. Energy 94:367–79. doi:10.1016/j.energy.2015.11.014.
  • An, Y., Y. Pei, J. Qin, H. Zhao, and X. Li. 2015. Kinetic modeling of polycyclic aromatic hydrocarbons formation process for gasoline surrogate fuels. Energy Convers. Manage. 100:249–61. doi:10.1016/j.enconman.2015.05.013.
  • Appel, J., H. Bockhorn, and M. Frenklach. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combust. Flame 121 (1):122–36. doi:10.1016/s0010-2180(99)00135-2.
  • Botero, M. L., S. Mosbach, and M. Kraft. 2016. Sooting tendency and particle size distributions of n-heptane/toluene mixtures burned in a wick-fed diffusion flame. Fuel 169:111–19. doi:10.1016/j.fuel.2015.12.014.
  • Brasil, A. M., T. L. Farias, U. O. Koylu, and M. G. Carvalho. 1998. A recipe for image characterization of fractal-like aggregates. J. Aerosol. Sci. 29:S1275–S1276. doi:10.1016/s0021-8502(98)90820-5.
  • Brugge, D. J. L., and C. R. Durant. 2007. Near-highway pollutants in motor vehicle exhaust: A review of epidemiologic evidence of cardiac and pulmonary health risks. Environ. Health 6 (1):23. doi:10.1186/1476-069x-6-23.
  • Chen, W., S. Shuai, and J. Wang. 2009. A soot formation embedded reduced reaction mechanism for diesel surrogate fuel. Fuel 88 (10):1927–36. doi:10.1016/j.fuel.2009.03.039.
  • Cheng, X., L. Chen, F. Yan, and S. Dong. 2013. Study on soot formation characteristics in the diesel combustion process based on an improved detailed soot model. Energy Convers. Manage. 75:1–10. doi:10.1016/j.enconman.2013.05.033.
  • Choi, S. K., B. C. Choi, S. M. Lee, and J. H. Choi. 2015. The effect of liquid fuel doping on PAH and soot formation in counterflow ethylene diffusion flames. Exp. Therm Fluid Sci. 60:123–31. doi:10.1016/j.expthermflusci.2014.08.008.
  • Chu, H., W. Han, W. Cao, M. Gu, and G. Xu. 2019. Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame. Energy 166:392–400. doi:10.1016/j.energy.2018.10.093.
  • Dreyer, J. A. H., M. Poli, N. A. Eaves, M. L. Botero, J. Akroyd, S. Mosbach, and M. Kraft. 2019. Evolution of the soot particle size distribution along the centreline of an n-heptane/toluene co-flow diffusion flame. Combust. Flame 209:256–66. doi:10.1016/j.combustflame.2019.08.002.
  • Eaves, N. A., Q. Zhang, F. Liu, H. Guo, S. B. Dworkin, and M. J. Thomson. 2016. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames. Comput. Phys. Commun. 207:464–77. doi:10.1016/j.cpc.2016.06.016.
  • Evans, M. J., P. R. Medwell, Z. Sun, A. Chinnici, J. Ye, Q. N. Chan, and B. B. Dally. 2019. Downstream evolution of n-heptane/toluene flames in hot and vitiated coflows. Combust. Flame 202:78–89. doi:10.1016/j.combustflame.2019.01.008.
  • Gu, M., H. Chu, and F. Liu. 2016. Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame. Combust. Flame 166:216–28. doi:10.1016/j.combustflame.2016.01.023.
  • Gustavsson, J., and V. I. Golovitchev. 2003. Spray combustion simulation based on detailed chemistry approach for diesel fuel surrogate model. SAE Technical Papers. doi:10.4271/2003-01-1848.
  • Harris, S. J., and A. M. Weiner. 1984. Soot particle growth in premixed toluene/ethylene flames. Combust. Sci. Technol. 38 (1–2):75–87. doi:10.1080/00102208408923764.
  • Hellier, P., N. Ladommatos, R. Allan, and J. Rogerson. 2013. Combustion and emissions characteristics of toluene/n-heptane and 1-octene/n-octane binary mixtures in a direct injection compression ignition engine. Combust. Flame 160 (10):2141–58. doi:10.1016/j.combustflame.2013.04.016.
  • Hua, Y., L. Qiu, F. Liu, Y. Qian, and S. Meng. 2020. Numerical investigation into the effects of oxygen concentration on flame characteristics and soot formation in diffusion and partially premixed flames. Fuel 268. doi:10.1016/j.fuel.2020.117398.
  • Inal, F., and S. M. Senkan. 2002. Effects of equivalence ratio on species and soot concentrations in premixed n-heptane flames. Combust. Flame 131 (1–2):16–28. doi:10.1016/s0010-2180(02)00388-7.
  • Kim, W., C. Sorensen, D. Fry, and A. Chakrabarti. 2006. Soot aggregates, superaggregates and gel-like networks in laminar diffusion flames. J. Aerosol. Sci. 37 (3):386–401. doi:10.1016/j.jaerosci.2005.05.022.
  • Kobayashi, Y., T. Furuhata, K. Amagai, and M. Arai. 2008. Soot precursor measurements in benzene and hexane diffusion flames. Combust. Flame 154 (3):346–55. doi:10.1016/j.combustflame.2008.03.022.
  • Lee, S. M., S. S. Yoon, and S. H. Chung. 2004. Synergistic effect on soot formation in counterflow diffusion flames of ethylene–propane mixtures with benzene addition. Combust. Flame 136 (4):493–500. doi:10.1016/j.combustflame.2003.12.005.
  • Li, S., Y. Li, J. Liu, W. Meng, M. Wang, Y. Cao, S. Cao, L. Yao, and K. Zhang. 2021. Development of a phenomenological soot model integrated with a reduced TRF-PAH mechanism for diesel engine application. Fuel 283. doi:10.1016/j.fuel.2020.118810.
  • Li, Z., X. Cheng, L. Qiu, Y. Li, and H. Wu. 2019. Evolution of soot microstructure in the diffusion flame of n-heptane/n-butanol blend. J. Combust. Sci. Technol. 25 (1):73–82. doi:10.1016/j.fuel.2017.09.036.
  • Lin, S., J. Munsie, S. Hwang, E. Fitzgerald, and M. Cayo. 2002. Childhood asthma hospitalization and residential exposure to state route traffic. Environ. Res. 88 (2):73–81. doi:10.1006/enrs.2001.4303.
  • Liu, F., Y. Hua, H. Wu, and C. Lee. 2018. Effect of toluene addition on the PAH formation in laminar coflow diffusion flames of n-heptane and isooctane. Energy & Fuels 32 (6):7142–52. doi:10.1021/acs.energyfuels.8b00745.
  • Liu, H., C. Wang, X. Kong, W. Liu, C. Jin, and Z. Zheng. 2020. Effect of diesel hydrocarbon group components on diesel engine emissions. Acta Scientiae Circumstantiae 40 (2):479–91. doi:10.13671/j.hjkxxb.2019.0331.
  • Özer, S. 2020. The effect of adding toluene to increase the combustion efficiency of biodiesel. Energy Sources 10:1–16. doi: 10.1080/15567036.2020.1776421.
  • Pang, B., M. Xie, M. Jia, and Y. Liu. 2013. Development of a phenomenological soot model coupled with a skeletal PAH mechanism for practical engine simulation. Energy & Fuels 27 (3):1699–711. doi:10.1021/ef400033f.
  • Reilly, P. T. A., R. A. Gieray, W. B. Whitten, and J. M. Ramsey. 2000. Direct observation of the evolution of the soot carbonization process in an acetylene diffusion flame via real-time aerosol mass spectrometry. Combust. Flame 122 (1):90–104. doi:10.1016/s0010-2180(00)00105-x.
  • Ruan, F., and X. Zeng. 2021. Health impact analysis of air pollution from China’s transportation industry in 2010~2018. China Environ. Sci. 41 (3):1480–88. doi:10.1016/S2542-5196(18)30141-4.
  • Sun, X., X. Liang, G. Shu, Y. Wang, and Y. Chen. 2019. Effect of toluene content on the combustion and emissions of large two-stroke marine diesel engine. Appl. Therm. Eng. 159:113909. doi:10.1016/j.applthermaleng.2019.113909.
  • Tang, Q., B. Ge, Q. Ni, B. Nie, and X. You. 2018. Soot formation characteristics of n-heptane/toluene mixtures in laminar premixed burner-stabilized stagnation flames. Combust. Flame 187:239–46. doi:10.1016/j.combustflame.2017.08.022.
  • Wang, H., Q. Jiao, M. Yao, B. Yang, L. Qiu, and R. D. Reitz. 2013. Development of an n-heptane/toluene/polyaromatic hydrocarbon mechanism and its application for combustion and soot prediction. Int. J. Engine Res. 14 (5):434–51. doi:10.1177/1468087412471056.
  • Wang, H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33 (1):41–67. doi:10.1016/j.proci.2010.09.009.
  • Wang, Y., M. Gu, Y. Gao, X. Liu, and Y. Lin. 2020. An experimental and numerical study of soot formation of laminar coflow H2/C2H4 diffusion flames in O2-CO2 atmosphere. Combust. Flame 221:50–63. doi:10.1016/j.combustflame.2020.07.026.
  • Wei, J., C. Song, G. Lv, J. Song, L. Wang, and H. Pang. 2015. A comparative study of the physical properties of in-cylinder soot generated from the combustion of n-heptane and toluene/n-heptane in a diesel engine. Proc. Combust. Inst. 35 (2):1939–46. doi:10.1016/j.proci.2014.06.011.
  • Xiao, Z., N. Ladommatos, and H. Zhao. 2000. The effect of aromatic hydrocarbons and oxygenates on diesel engine emissions. Proc. Inst. Mech. Eng., Part D 214 (3):307–32. doi:10.1243/0954407001527448.
  • Yao, Z., and R. Liu. 2011. Review on the study of particulate emissions from diesel vehicle. Sci. Technol. Rev. 29 (11–08):75–79. doi:10.3981/j.1000-7857.2011.08.013.
  • Zhang, K., Q. Xin, Z. Mu, Z. Niu, and Z. Wang. 2019. Numerical simulation of diesel combustion based on n-heptane and toluene. Propul. Power Res. 8 (2):121–27. doi:10.1016/j.jppr.2019.01.009.
  • Zhang, Q. 2009. Detailed modeling of soot formation/oxidation in laminar coflow diffusion flames. Canada: University of Toronto.
  • Zhang, R., and S. Kook. 2015. Structural evolution of soot particles during diesel combustion in a single-cylinder light-duty engine. Combust. Flame 162 (6):2720–28. doi:10.1016/j.combustflame.2015.04.008.
  • Zhang, Y., A. Jiao, Y. Li, P. Liu, G. Yang, R. Zhan, W. L. Roberts, Z. Huang, and L. He. 2021. Chemical effects of anisole and toluene addition to n-heptane on PAH characteristics in laminar premixed flames by LIF measurement and kinetic model. Fuel 303:121255. doi:10.1016/j.fuel.2021.121255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.