430
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Prototype development of a new self-aspirating liquid-fueled microcombustor

ORCID Icon & ORCID Icon
Pages 2655-2675 | Received 06 Nov 2021, Accepted 15 Jan 2022, Published online: 24 Jan 2022

References

  • Aravind, B., D. K. Saini, and S. Kumar. 2019, September. Experimental investigations on the role of various heat sinks in developing an efficient combustion based micro power generator. ( 2018) Applied Thermal Engineering. 148:22–32. doi: 10.1016/j.applthermaleng.2018.11.016.
  • Ban, H., S. VAnkatesh, and K. Saito. 1994. Convection-diffusion controlled laminar micro flames. Transactions of the American Society for Mechanical Engineering 116:954–59.
  • Bharadwaz, N. K. A., N. Jain, and V. K. Arghode. 2020. Development of a standalone, liquid fuelled miniature power generation system. Journal of Energy Resources Technology 142 (4):1–8. doi:10.1115/1.4044764.
  • Chao, B. H., P. Cheng, and T. Le. 1994. Free-convective diffusion flame sheet in porous media. Combustion Science and Technology 99 (4–6):221–34. doi:10.1080/00102209408935434.
  • Chen, J., X. Peng, Z. Yang, J. Cheng, . 2009. Characteristics of liquid ethanol diffusion flames from mini tube nozzles. Combustion and Flame. 156 (2):460–66. doi:10.1016/j.combustflame.2008.08.007.
  • Chen, X., J. Li, D. Zhao, M. T. Rashid, X. Zhou, N. Wang, . 2021. Effects of porous media on partially premixed combustion and heat transfer in meso-scale burners fuelled with ethanol. Energy 224. :120191. doi:10.1016/j.energy.2021.120191.
  • Chen, X., J. Li, M. Feng, D. Zhao, B. Shi, N. Wang, . 2019. Flame stability and combustion characteristics of liquid fuel in a meso-scale burner with porous media. Fuel , 251:249–59. doi:10.1016/j.fuel.2019.04.011.
  • Chou, S. K., W. M. Yang, K. J. Chua, J. Li, K. L. Zhang, . 2011. Development of micro power generators - A review. Applied Energy 88 (1):1–16. doi:10.1016/j.apenergy.2010.07.010.
  • Gan, Y., X. Chen, Y. Tong, X. Zhang, Y. Zhang, . 2018. Thermal performance of a meso-scale combustor with electrospray technique using liquid ethanol as fuel. Applied Thermal Engineering. 128:274–81. doi:10.1016/j.applthermaleng.2017.09.016.
  • Giovannoni, V., R. N. Sharma, and R. R. Raine. 2020. Experimental investigation of a small-scale combustion chamber fuelled with vegetable oil. Combustion Science and Technology. 192 (2):240–59. doi:10.1080/00102202.2019.1565492.
  • Jiang, Z., Gan, Y., Ju, Y., Linag , J., Zhou, Y., . 2019. Experimental study on the electrospray and combustion characteristics of biodiesel-ethanol blends in a meso-scale combustor. Energy. 179:843–49. doi:10.1016/j.energy.2019.05.024.
  • Khan, M. A., A. Katoch, H. Gadgil, S. Kumar, . 2019. First step towards atomization at ultra-low flow rates using conventional twin-fluid atomizer. Experimental Thermal and Fluid Science. 109:109844. doi:10.1016/j.expthermflusci.2019.109844. .
  • Khan, M. A., H. Gadgil, and S. Kumar. 2019. Influence of liquid properties on atomization characteristics of flow-blurring injector at ultra-low flow rates. Energy 171:1–13. . doi:10.1016/j.energy.2019.01.006.
  • Khan, M. A., H. Gadgil, and S. Kumar. 2021. EXPERIMENTAL INVESTIGATIONS INTO LIQUID BREAKUP MORPHOLOGY AND SPRAY CHARACTERISTICS OF A CROSS-FLOW INJECTOR. Atomization and Sprays 31 (2):63–86. doi:10.1615/ATOMIZSPR.2020035285.
  • Kiss, A., and A. Gaspar. 2018. Fabrication of a microfluidic flame atomic emission spectrometer: A Flame-on-a-chip. Analytical Chemistry. 90 (10):5995–6000. doi:10.1021/acs.analchem.8b00774.
  • Komeya, M., K. Hayashi, H. Nakamura, H. Yamanaka, H. Sanjo, K. Kojima, T. Sato, M. Yao, H. Kimura, T. Fujii, Ogawa, T., . 2017. Pumpless microfluidic system driven by hydrostatic pressure induces and maintains mouse spermatogenesis in vitro. Scientific Reports 7 (1):1–8. doi:10.1038/s41598-017-15799-3.
  • Kyritsis, D. C., S. Roychoudhury, C. S. McEnally, L. D. Pfefferle, A. Gomez, . 2004. Mesoscale combustion: A first step towards liquid fueled batteries. Experimental Thermal and Fluid Science 28 (7):763–70. doi:10.1016/j.expthermflusci.2003.12.014.
  • Li, Y. H., Y.-C. Chao, N. S. Amadé, D. Dunn-Rankin, . 2008. Progress in miniature liquid film combustors: Double chamber and central porous fuel inlet designs. Experimental Thermal and Fluid Science 32 (5):1118–31. doi:10.1016/j.expthermflusci.2008.01.005.
  • Li, Y.-H., Y.-S. Lien, Y.-C. Chao, D. Dunn-Rankin, . 2009. Performance of a mesoscale liquid fuel-film combustion-driven TPV power system. Progress in Photovoltaics: Research and Applications 17(5):327–36. doi:10.1002/pip.877.
  • Mäki, A., S. Hemmilä, J. Hirvonen, N. N. Girish, J. Kreutzer, J. Hyttinen, P. Kallio, . 2015. Modeling and experimental characterization of pressure drop in gravity-driven microfluidic systems. Journal of Fluid Engineering 137 (February):1–8. doi:10.1115/1.4028501.
  • Maruta, K. 2011. Micro and mesoscale combustion. Proceedings of the Combustion Institute 33(1):125–50. . doi:10.1016/j.proci.2010.09.005.
  • Mattioli, R., T. K. Pham, and D. Dunn-Rankin. 2009. Secondary air injection in miniature liquid fuel film combustors. Proceedings of the Combustion Institute. 32 (2):3091–98. . doi:10.1016/j.proci.2008.06.174.
  • Mikami, M., Y. Maeda, K. Matsui, T. Seo, L. Yuliati, . 2013. Combustion of gaseous and liquid fuels in meso-scale tubes with wire mesh. Proceedings of the Combustion Institute. 34 (2):3387–94. doi:10.1016/j.proci.2012.05.064.
  • Pham, T. K., D. Dunn-Rankin, and W. A. Sirignano. 2007. Flame structure in small-scale liquid film combustors. Proceedings of the Combustion Institute 31 (2):3269–75. . doi:10.1016/j.proci.2006.08.030.
  • Rashid, M. T., J. Li, X. Chen, A. Song, . 2021a. Numerical simulation of evaporation phenomena and heat transfer of liquid hydrocarbon in a microtube. International journal of heat and mass transfer 179. :121734. doi:10.1016/j.ijheatmasstransfer.2021.121734.
  • Rashid, M. T., J. Li, X. Chen, N. Wang, . 2021b. Flow boiling and heat transfer of N-heptane flow in a microtube heated by concurrent microflame flow boiling and heat transfer of N-heptane flow. Combustion science and technology. 1–29. doi:10.1080/00102202.2021.1947263.
  • Sadasivuni, V., and A. K. Agrawal. 2009. A novel meso-scale combustion system for operation with liquid fuels. Proceedings of the Combustion Institute. 32(2):3155–62. II. doi:10.1016/j.proci.2008.06.039.
  • Sarafraz, M. M., and F. C. Christo. 2021. Thermal and flow characteristics of liquid flow in a 3D-printed micro-reactor: A numerical and experimental study. Applied Thermal Engineering. 199 ():117531. doi:10.1016/j.applthermaleng.2021.117531.
  • Singh, T., R. Marsh, and G. Min. 2016. Development and investigation of a non-catalytic self-aspirating meso-scale premixed burner integrated thermoelectric power generator. Energy Conversion & Management 117:431–41. doi:10.1016/j.enconman.2016.03.020.
  • Sirignano, W. A., T. K. Pham, and D. Dunn-rankin. 2002. MINIATURE-SCALE LIQUID-FUEL-FILM COMBUSTOR. Proceedings of the Combustion Institute 29 (1):925–31. . doi:10.1016/S1540-7489(02)80117-1.
  • Sun, L., Hao, Y., Zhang, C., Ran, R., Shao, Z., . 2010. Cooking-free direct-methanol-flame fuel cell with traditional nickel-cermet anode. International Journal of Hydrogen Energy. 35 (15):7971–81. doi:10.1016/j.ijhydene.2010.05.048.
  • Taywade, U. W., A. A. Deshpande, and S. Kumar. 2013. Thermal performance of a micro combustor with heat recirculation. Fuel Processing Technology 109:179–88. . doi:10.1016/j.fuproc.2012.11.002.
  • Walther, D. C., and J. Ahn. 2011. Advances and challenges in the development of power-generation systems at small scales. Progress in Energy and Combustion Science 37(5):583–610. . doi:10.1016/j.pecs.2010.12.002.
  • Wu, W. 2018 A pressure-driven gas-diffusion/permeation micropump for self-activated sample transport in an extreme micro-environment.Analyst 143 (20) :4819–4835doi:10.1039/c8an01120f.
  • Yadav, S., Sharma, P., Yamasani, P., Minaev, S., Kumar, S., . 2014. A prototype micro-thermoelectric power generator for micro- electromechanical systems. Applied Physics Letters 104 (12):2012–16. doi:10.1063/1.4870260.
  • Yang, W., Zhou, M., Deng, C., Huang, T., Zhou, J., Wang, Z., Liu, J., Cen, K., . 2016. Experiments on n-heptane combustion with two types of catalyst layouts. Applied Thermal Engineering 100. :325–32. doi:10.1016/j.applthermaleng.2016.02.010.
  • Yuliati, L., T. Seo, and M. Mikami. 2012. Liquid-fuel combustion in a narrow tube using an electrospray technique. Combustion and Flame. 159 (1):462–64. doi:10.1016/j.combustflame.2011.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.