233
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Cobalt copper zinc ferrite: An efficient catalyst for the thermal decomposition of ammonium perchlorate

, , , &
Pages 2732-2749 | Received 02 Mar 2021, Accepted 08 Feb 2022, Published online: 18 Feb 2022

References

  • Amaliya, A. P., S. Anand, and S. Pauline. 2018. Investigation on structural, electrical and magnetic properties of titanium substituted cobalt ferrite nanocrystallites. Journal of Magnetism and Magnetic Materials 467:14–28. doi:10.1016/j.jmmm.2018.07.058.
  • Babar, Z., and A. Q. Malik. 2015. An Investigation of Thermal Decomposition Kinetics of Nano Zinc Oxide Catalyzed Composite Propellant. Combustion Science and Technology 187 (8):1295–315. doi:10.1080/00102202.2015.1035375.
  • Badgujar, D. M., M. B. Talawar, S. N. Asthana, and P. P. Mahulikar. 2008. Advances in science and technology of modern energetic materials: An overview. Journal of Hazardous Materials 151 (2):289–305. doi:10.1016/j.jhazmat.2007.10.039.
  • Badgujar, D. M., M. B. Talawar, V. E. Zarko, and P. P. Mahulikar. 2019. Recent Advances in Safe Synthesis of Energetic Materials: An Overview. Combustion, Explosion, and Shock Waves 55 (3):245–57. doi:10.1134/S0010508219030018.
  • Bagalkote, V., D. Grinstein, and B. Natan. 2018. Energetic Nanocomposites as Burn Rate Catalyst for Composite Solid Propellants. Propellants, Explosives, Pyrotechnics 43 (2):136–43. doi:10.1002/prep.201700095.
  • Chandrababu, P., J. Thankarajan, V. Sukumaran Nair, and R. Raghavan. 2020. Decomposition of ammonium perchlorate: Exploring catalytic activity of nanocomposites based on nano Cu/Cu2O dispersed on graphitic carbon nitride. Thermochimica Acta 691:178720. doi:10.1016/j.tca.2020.178720.
  • Chaturvedi, S., and P. N. Dave. 2012. Nano-metal oxide: Potential catalyst on thermal decomposition of ammonium perchlorate. Journal of Experimental Nanoscience 7 (2):205–31. doi:10.1080/17458080.2010.517571.
  • Chaturvedi, S., and P. N. Dave. 2013a. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. Journal of Saudi Chemical Society 17 (2):135–49. doi:10.1016/j.jscs.2011.05.009.
  • Chaturvedi, S., and P. N. Dave. 2013b. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. Journal of Saudi Chemical Society 17 (2):135–49. doi:10.1016/j.jscs.2011.05.009.
  • Chaturvedi, S., and P. N. Dave. 2019. Solid propellants: AP/HTPB composite propellants. Arabian Journal of Chemistry 12 (8):2061–68. doi:10.1016/j.arabjc.2014.12.033.
  • Chaturvedi, S., P. N. Dave, and N. K. Shah. 2012. Applications of nano-catalyst in new era. Journal of Saudi Chemical Society 16 (3):307–25. doi:10.1016/j.jscs.2011.01.015.
  • Chawla, M., R. Dubey, G. Singh, S. K. Sengupta, and P. F. Siril. 2017. Controlling the morphology of layered double hydroxides of Mn and Co and their exceptional catalytic activities. Thermochimica Acta 654:130–39. doi:10.1016/j.tca.2017.05.017.
  • Chen, R., G. Li, W. Bai, S. Bao, and Z. Cheng. 2018. Synthesis of Rod-Like Porous MgFe2O4 Architectures as a Catalyst for Ammonium Perchlorate Thermal Decomposition. Nano 13 (6):1850069. doi:10.1142/S1793292018500698.
  • Chen, T., P. Du, W. Jiang, J. Liu, G. Hao, H. Gao, L. Xiao, X. Ke, F. Zhao, and C. Xuan. 2016. A facile one-pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate. RSC Advances 6 (87):83838–47. doi:10.1039/C6RA16448J.
  • Chen, T., Y. Hu, C. Zhang, and Z. Gao. 2020. Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate. Defence Technology. doi:10.1016/j.dt.2020.08.004.
  • Cheng, Y., Y. Li, S. Yan, and C. Huang. 2010. Deviation of activation energy caused by neglecting a temperature term in Ozawa Equation. Journal of Mathematical Chemistry 48 (3):704–13. doi:10.1007/s10910-010-9703-5.
  • Dave, P. N., P. N. Ram, and S. Chaturvedi. 2015. Nanoferrites: Catalyst for Thermal Decomposition of Ammonium Per Chlorate. Particulate Science and Technology 33 (6):677–81. doi:10.1080/02726351.2015.1023479.
  • Dey, A., J. Athar, P. Varma, H. Prasant, A. K. Sikder, and S. Chattopadhyay. 2014. Graphene-iron oxide nanocomposite (GINC): An efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant. RSC Advances 5 (3):1950–60. doi:10.1039/C4RA10812D.
  • Dubey, R., P. Srivastava, I. P. S. Kapoor, and G. Singh. 2012. Synthesis, characterization and catalytic behavior of Cu nanoparticles on the thermal decomposition of AP, HMX, NTO and composite solid propellants, Part 83. Thermochimica Acta 549:102–09. doi:10.1016/j.tca.2012.09.016.
  • Fertassi, M. A., K. T. Alali, Q. Liu, R. Li, P. Liu, J. Liu, L. Liu, and J. Wang. 2016. Catalytic effect of CuO nanoplates, a graphene (G)/CuO nanocomposite and an Al/G/CuO composite on the thermal decomposition of ammonium perchlorate. RSC Advances 6 (78):74155–61. doi:10.1039/C6RA13261H.
  • Gong, L., Y. Guo, L. Meng, J. Li, and R. Yang. 2020. Kinetics Model Reconstruction for Multistep Overlapping Thermal Decomposition of Ammonium Perchlorate with and without the Copper Oxide Compound Catalyst. Combustion Science and Technology 1–16. doi:10.1080/00102202.2020.1763324.
  • Guan, X., L. Li, J. Zheng, and G. Li. 2011. MgAl2O4 nanoparticles: A new low-density additive for accelerating thermal decomposition of ammonium perchlorate. RSC Advances 1 (9):1808–14. doi:10.1039/C1RA00489A.
  • Hosseini, S. G., and R. Abazari. 2015. A facile one-step route for production of CuO, NiO, and CuO–NiO nanoparticles and comparison of their catalytic activity for ammonium perchlorate decomposition. RSC Advances 5 (117):96777–84. doi:10.1039/C5RA20155A.
  • Hosseini, S. G., S. Gholami, and M. Mahyari. 2019. Superb catalytic properties of nickel cobalt bimetallic nanoparticles immobilized on 3D nitrogen-doped graphene for thermal decomposition of ammonium perchlorate. Research on Chemical Intermediates 45 (3):1527–43. doi:10.1007/s11164-018-3677-5.
  • Jagtap, R. M., D. R. Kshirsagar, V. H. Khire, and S. K. Pardeshi. 2019. Facile fabrication of porous La doped ZnO granular nanocrystallites and their catalytic evaluation towards thermal decomposition of ammonium perchlorate. Journal of Solid State Chemistry 276:194–204. doi:10.1016/j.jssc.2019.05.001.
  • Juibari, N. M., and A. Eslami. 2017. Investigation of catalytic activity of ZnAl2O4 and ZnMn2O4 nanoparticles in the thermal decomposition of ammonium perchlorate. Journal of Thermal Analysis and Calorimetry 128 (1):115–24. doi:10.1007/s10973-016-5906-8.
  • Kang, L., S. Li, B. Wang, X. Li, and Q. Zeng. 2018. Exploration of the Energetic Material Ammonium Perchlorate at High Pressures: Combined Raman Spectroscopy and X-ray Diffraction Study. The Journal of Physical Chemistry C 122 (28):15937–44. doi:10.1021/acs.jpcc.8b05046.
  • Ke, X., X. Zhou, G. Hao, L. Xiao, H. Gao, T. Chen, and W. Jiang. 2017. Template-assisted synthesis of 3D ordered macroporous structured CuO as catalyst for ammonium perchlorate. Functional Materials Letters 10 (3):1750030. doi:10.1142/S1793604717500308.
  • Kohga, M., and S. Togo. 2020. Catalytic Effect of Added Fe2O3 Amount on Thermal Decomposition Behaviors and Burning Characteristics of Ammonium Nitrate/Ammonium Perchlorate Propellants. Combustion Science and Technology 192 (9):1668–81. doi:10.1080/00102202.2019.1620736.
  • Kumar, H., P. N. Tengli, V. K. Mishra, P. Tripathi, A. Bhushan, and P. K. Mishra. 2017a. The effect of reduced graphene oxide on the catalytic activity of Cu–Cr–O–TiO2 to enhance the thermal decomposition rate of ammonium perchlorate: An efficient fuel oxidizer for solid rocket motors and missiles. RSC Advances 7 (58):36594–604. doi:10.1039/C7RA06012B.
  • Kumar, H., P. N. Tengli, V. K. Mishra, P. Tripathi, D. B. Pal, and P. K. Mishra. 2017b. Synthesis and catalytic activity of Cu–Cr–O–TiO2 composites for the thermal decomposition of ammonium per-chlorate: Enhanced decomposition rate of fuel for solid rocket motors. Royal Society of Chemistry Advances 7 (21):12486–95. doi:10.1039/c6ra28297k.
  • Li, G., X. Liu, and W. Bai. 2018. Fabrication of porous MgCo2O4 with rod-like morphology and its superb catalytic activity towards ammonium perchlorate thermal decomposition. Materials Research Express 5 (3):035036. doi:10.1088/2053-1591/aab4e7.
  • Li, Y., T. Zhang, J. Li, C. Li, Z. Guo, and H. Ma. 2020. Three-dimensional nickel foam templated MgCo2O4 nanowires as an efficient catalyst for the thermal decomposition of ammonium perchlorate. Journal of Solid State Chemistry 288:121426. doi:10.1016/j.jssc.2020.121426.
  • Mahdavi, M., H. Farrokhpour, and M. Tahriri. 2017. In situ formation of MxOy nano-catalysts (M = Mn, Fe) to diminish decomposition temperature and enhance heat liberation of ammonium perchlorate. Materials Chemistry and Physics 196:9–20. doi:10.1016/j.matchemphys.2017.04.038.
  • Mergen, Ö. B., and E. Arda. 2020. Determination of Optical Band Gap Energies of CS/MWCNT Bio-nanocomposites by Tauc and ASF Methods. Synthetic Metals 269:116539. doi:10.1016/j.synthmet.2020.116539.
  • Pandas, H. M., and M. Fazli. 2018. Preparation and Application of La2O3 and CuO Nano Particles as Catalysts for Ammonium Perchlorate Thermal Decomposition. Propellants, Explosives, Pyrotechnics 43 (11):1096–104. doi:10.1002/prep.201800036.
  • Seetharamacharyulu, D., V. R. P. Verneker, R. M. Mallya, and R. N. Kumar. 1981. Combustion and Thermal Decomposition of Ammonium Perchlorate–Aluminium Composite Pellets: Mechanism for Aluminium Participation. Combustion Science and Technology 25 (3–4):147–51. doi:10.1080/00102208108547514.
  • Song, M., M. Chen, and Z. Zhang. 2008. Effect of Zn Powders on the Thermal Decomposition of Ammonium Perchlorate. Propellants, Explosives, Pyrotechnics 33 (4):261–65. doi:10.1002/prep.200800222.
  • Starink, M. J. 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochimica Acta 404 (1):163–76. doi:10.1016/S0040-6031(03)00144-8.
  • Sun, R., L. Wang, H. Yu, C. Zain-ul-abdin, Y. Khalid, H. Abbasi, N, M. Akram, and M. Akram. 2014. Synthesis of Ferrocene-Based Hyperbranched Polyether and Its Catalytic Performance for Thermal Decomposition of Ammonium Perchlorate. Journal of Inorganic and Organometallic Polymers and Materials 24 (6):1063–69. doi:10.1007/s10904-014-0084-2.
  • Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87 (9–10):9–10. doi:10.1515/pac-2014-1117.
  • Trache, D., A. Abdelaziz, and B. Siouani. 2017. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. Journal of Thermal Analysis and Calorimetry 128 (1):335–48. doi:10.1007/s10973-016-5962-0.
  • Trache, D., and L. T. DeLuca. 2020. Nanoenergetic Materials: Preparation, Properties, and Applications. Nanomaterials 10 (12):2347. doi:10.3390/nano10122347.
  • Vara, J. A., P. N. Dave, and S. Chaturvedi. 2019. The catalytic activity of transition metal oxide nanoparticles on thermal decomposition of ammonium perchlorate. Defence Technology 15 (4):629–35. doi:10.1016/j.dt.2019.04.002.
  • Vara, J. A., P. N. Dave, and S. Chaturvedi. 2020. Investigating Catalytic Properties of Nanoferrites for Both AP and Nano-AP Based Composite Solid Propellant. Combustion Science and Technology. 1–15. doi:10.1080/00102202.2020.1734582.
  • Venturini, J., A. M. Tonelli, T. B. Wermuth, R. Y. S. Zampiva, S. Arcaro, A. Da Cas Viegas, and C. P. Bergmann. 2019. Excess of cations in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A pathway to switching the inversion degree of spinels. Journal of Magnetism and Magnetic Materials 482:1–8. doi:10.1016/j.jmmm.2019.03.057.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520 (1):1–19. doi:10.1016/j.tca.2011.03.034.
  • Wang, S., B. Ye, C. An, J. Wang, and Q. Li. 2019. Synergistic effects between Cu metal–organic framework (Cu-MOF) and carbon nanomaterials for the catalyzation of the thermal decomposition of ammonium perchlorate (AP). Journal of Materials Science 54 (6):4928–41. doi:10.1007/s10853-018-03219-4.
  • Xiao, X., B. Peng, L. Cai, X. Zhang, S. Liu, and Y. Wang. 2018. The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method. Scientific Reports 8 (1):7571. doi:10.1038/s41598-018-26022-2.
  • Xiao, X., Z. Zhang, L. Cai, Y. Li, Z. Yan, and Y. Wang. 2019. The excellent catalytic activity for thermal decomposition of ammonium perchlorate using porous CuCo2O4 synthesized by template-free solution combustion method. Journal of Alloys and Compounds 797:548–57. doi:10.1016/j.jallcom.2019.05.074.
  • Xue, B., Z. Qian, C. Liu, and G. Luo. 2017. Synthesis of CuO nanoparticles via one-pot wet-chemical method and its catalytic performance on the thermal decomposition of ammonium perchlorate. Russian Journal of Applied Chemistry 90 (1):138–43. doi:10.1134/S1070427217010207.
  • Yang, Y., Y. Bai, F. Zhao, E. Yao, J. Yi, C. Xuan, and S. Chen. 2016. Effects of metal organic framework Fe-BTC on the thermal decomposition of ammonium perchlorate. RSC Advances 6 (71):67308–14. doi:10.1039/C6RA12634K.
  • Zhang, D., Q. Li, R. Li, H. Li, H. Gao, F. Zhao, L. Xiao, G. Zhang, G. Hao, and W. Jiang. 2021. Significantly Enhanced Thermal Decomposition of Mechanically Activated Ammonium Perchlorate Coupling with Nano Copper Chromite. ACS Omega 6 (24):16110–18. doi:10.1021/acsomega.1c02002.
  • Zhang, M., F. Zhao, Y. Yang, T. An, W. Qu, H. Li, J. Zhang, and N. Li. 2020a. Catalytic Activity of Ferrates (NiFe2O4, ZnFe2O4 and CoFe2O4) on the Thermal Decomposition of Ammonium Perchlorate. Propellants, Explosives, Pyrotechnics 45 (3):463–71. doi:10.1002/prep.201900211.
  • Zhang, T., Y. Guo, C. Li, Y. Li, J. Li, F. Zhao, and H. Ma. 2020b. The effect of LaFeO3@MnO2 on the thermal behavior of energetic compounds: An efficient catalyst with core-shell structure. Advanced Powder Technology 31 (11):4510–16. doi:10.1016/j.apt.2020.09.027.
  • Zhang, W., P. Li, H. Xu, R. Sun, P. Qing, and Y. Zhang. 2014. Thermal decomposition of ammonium perchlorate in the presence of Al(OH)3·Cr(OH)3 nanoparticles. Journal of Hazardous Materials 268:273–80. doi:10.1016/j.jhazmat.2014.01.016.
  • Zheng, X., P. Li, S. Zheng, and Y. Zhang. 2014. Thermal decomposition of ammonium perchlorate in the presence of Cu(OH)2·2Cr(OH)3 nanoparticles. Powder Technology 268:446–51. doi:10.1016/j.powtec.2014.08.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.