290
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Kinetics of Low-Temperature Plasma-Assisted Ignition of Ethanol-Gasoline Surrogate under Gasoline Engine like Conditions

ORCID Icon, &
Pages 2750-2773 | Received 22 Jun 2021, Accepted 08 Feb 2022, Published online: 22 Feb 2022

References

  • Aleksandrov, N. L., S. V. Kindysheva, I. N. Kosarev, S. M. Starikovskaia, and A. Y. Starikovskii. 2009a. Mechanism of ignition by non-equilibrium plasma. Proc. Combust. Inst 32:205–12. doi:10.1016/j.proci.2008.06.124.
  • Aleksandrov, N. L., S. V. Kindysheva, E. N. Kukaev, S. M. Starikovskaya, and A. Y. Starikovskii. 2009b. Simulation of the ignition of a methane-air mixture by a high-voltage nanosecond discharge. Plasma Phys. Rep. 35 (10):867–82. doi:10.1134/S1063780X09100109.
  • Asakawa, D., N. Saito, and E. Takahashi. 2020. Mass spectrometric characterization of the partial oxidation process of a gasoline surrogate induced by a dielectric barrier discharge. J. Phys. Chem. A 124:2019–28. doi:10.1021/acs.jpca.9b11806.
  • Azarmanesh, S., and M. Z. Targhi. 2021. Comparison of laser ignition and spark plug by thermodynamic simulation of multi-zone combustion for lean methane-air mixtures in the internal combustion engine. Energy 216:119309. doi:10.1016/j.energy.2020.119309.
  • Bak, M. S., H. Do, M. G. Mungal, and M. A. Cappelli. 2012. Plasma-assisted stabilization of laminar premixed methane/air flames around the lean flammability limit. Combust. Flame. 159 (10):3128–37. doi:10.1016/j.combustflame.2012.03.023.
  • Bao, A., Y. G. Utkin, S. Keshav, G. Lou, and I. V. Adamovich. 2007. Ignition of ethylene–air and methane–air flows by low-temperature repetitively pulsed nanosecond discharge plasma. IEEE. T. Plasma Sci 35:1628–38. doi:10.1109/TPS.2007.910143.
  • Bekefi, G., and A. H. Reed. 1977. Principles of laser plasmas.J. Electrochem. Soc. 124 (12):435C. doi:10.1149/1.2133218.
  • Benajes, J., R. Novella, J. Gomez-Soriano, P. J. Martinez-Hernandiz, C. Libert, and M. Dabiri. 2019. Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines. Appl. Energy. 248:576–88. doi:10.1016/j.apenergy.2019.04.131.
  • Breden, D., and L. Raja. 2012. Simulations of nanosecond pulsed plasmas in supersonic flows for combustion applications. AIAA J. 50 (3):647–58. doi:10.2514/1.J051238.
  • Breden, D., L. L. Raja, C. A. Idicheria, P. M. Najt, and S. Mahadevan. 2013. A numerical study of high-pressure non-equilibrium streamers for combustion ignition application. J. Appl. Phys. 114:083302. doi:10.1063/1.4818319.
  • Burcat, A., and B. Ruscic 2005. Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with updates from Active Thermochemical Tables [Online]. http://burcat.technion.ac.il/dir:TAE960 Accessed 2005 10 5.
  • Cathey, C. D., T. Tang, T. Shiraishi, T. Urushihara, A. Kuthi, and M. A. Gundersen. 2007. Nanosecond plasma ignition for improved performance of an internal combustion engine. IEEE Trans. Plasma Sci. 35 (6):1664–68. doi:10.1109/TPS.2007.907901.
  • Ciezk, H. K., and G. Adomeit. 1993. Shock-tube investigation of self-ignition of n -heptane-air mixtures under engine relevant conditions. Combust. Flame. 93:421–33. doi:10.1016/0010-2180(93)90142-P.
  • Cruccolini, V., G. Discepoli, A. Cimarello, M. Battistoni, F. Mariani, C. N. Grimaldi, and M. Dal Re. 2020. Lean combustion analysis using a Corona discharge igniter in an optical engine fueled with methane and a hydrogen-methane blend. Fuel. 259:116290. doi:10.1016/j.fuel.2019.116290.
  • Do, H., M. A. Cappelli, and M. G. Mungal. 2010. Plasma assisted cavity flame ignition in supersonic flows. Combustion and Flame 157 (9):1783–94. doi:10.1016/j.combustflame.2010.03.009.
  • Fieweger, K., R. Blumenthal, and G. Adomeit. 1997. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure. Combus. Flame 109:599–619. doi:10.1016/S0010-2180(97)00049-7.
  • Filimonova, E. A., A. S. Dobrovolskaya, A. N. Bocharov, V. A. Bityurin, and G. V. Naidis. 2020. Formation of combustion wave in lean propane-air mixture with a non-uniform chemical reactivity initiated by nanosecond streamer discharges in the HCCI engine. Combust. Flame. 215:401–16. doi:10.1016/j.combustflame.2020.01.029.
  • Gong, C., J. Yu, K. Wang, J. Liu, W. Huang, X. Si, F. Wei, F. Liu, and Y. Han. 2018. Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine. Energy 153:1028–37. doi:10.1016/j.energy.2018.04.096.
  • Hagelaar, G. J. M., and L. C. Pitchford. 2005. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Tech. 14:722–33. doi:10.1088/0963-0252/14/4/011.
  • Han, J., and H. Yamashita. 2014. Numerical study of the effects of non-equilibrium plasma on the ignition delay of a methane–air mixture using detailed ion chemical kinetics. Combust. Flame. 161 (8):2064–72. doi:10.1016/j.combustflame.2014.01.025.
  • Hayash, M. 1987. Electron collision cross-sections for molecules determind from beam and swarm data. In Swarm studies and inelastic electron-molecule collision, ed. L. C. Pitchford. New York: Springer-Verlag New York Inc 167–87 .
  • He, B.-Q., X. Chen, C.-L. Lin, and H. Zhao. 2016. Combustion characteristics of a gasoline engine with independent intake port injection and direct injection systems for n-butanol and gasoline. Energ. Convers. Manage 124:556–65. doi:10.1016/j.enconman.2016.07.053.
  • He, B.-Q., J. Yuan, M.-B. Liu, and H. Zhao. 2014. Low-temperature combustion characteristics of a n -Butanol/Isooctane HCCI Engine. Energ. Fuel. 28 (6):4183–92. doi:10.1021/ef500508h.
  • Inoue, I., T. Aizawa, T. Ishijima, and R. Ono. 2021. Measurement of the density and rotational temperature of OH in a saturated water vapor slot-excited microwave plasma. J. Phys. D. Appl. Phys 54:195201. doi:10.1088/1361-6463/abe440.
  • Ionin, A. A., I. V. Kochetov, A. P. Napartovich, and N. N. Yuryshev. 2007. Physics and engineering of singlet delta oxygen production in low-temperature plasma. Journal of Physics D Appl Phys. 40 (2):R25–R61. doi:10.1088/0022-3727/40/2/R01.
  • Itikawa, Y., M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi. 1986. Cross sections for collisions of electrons and photons with nitrogen molecules. J. Phys. Chem. Ref. Data 15:985–1010. doi:10.1063/1.555762.
  • Ju, Y., and W. Sun. 2015. Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. Sci 48:21–83.
  • Jung, D., K. Sasaki, and N. Iida. 2017. Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation. Appl Energy. 205:1467–77. doi:10.1016/j.apenergy.2017.08.043.
  • Kelley, A. P., G. Jomaas, and C. K. Law. 2009. Critical radius for sustained propagation of spark-ignited spherical flames. Combust. Flame 156:1006–13. doi:10.1016/j.combustflame.2008.12.005.
  • Kosarev, I. N., N. L. Aleksandrov, S. V. Kindysheva, S. M. Starikovskaia, and A. Y. Starikovskii. 2008. Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: CH4-containing mixtures. Combust. Flame. 154 (3):569–86. doi:10.1016/j.combustflame.2008.03.007.
  • Kosarev, I. N., N. L. Aleksandrov, S. V. Kindysheva, S. M. Starikovskaia, and A. Y. Starikovskii. 2009. Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: C2H6- to C5H12- containing mixtures. Combust. Flame. 156:221–33. doi:10.1016/j.combustflame.2008.07.013.
  • Kosarev, I. N., S. V. Kindysheva, N. L. Aleksandrov, and A. Y. Starikovskiy. 2015. Ignition of ethanol-containing mixtures excited by nanosecond discharge above self-ignition threshold. Combust. Flame. 162 (1):50–59. doi:10.1016/j.combustflame.2014.07.014.
  • Kossyi, I. A., A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov. 1992. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci. Tech 1:207–20. doi:10.1088/0963-0252/1/3/011.
  • Lefkowitz, J. K., M. Uddi, B. C. Windom, G. Lou, and Y. Ju. 2015. In situ species diagnostics and kinetic study of plasma activated ethylene dissociation and oxidation in a low temperature flow reactor. Proc. Combust. Inst. 35 (3):3505–12. doi:10.1016/j.proci.2014.08.001.
  • Li, S., C. Bai, X. Chen, W. Meng, L. Li, and J. Pan. 2021. Numerical investigation on plasma assisted ignition of methane/air mixture excited by the synergistic nanosecond repetitive pulsed and DC discharge. J. Phys. D: Appl. Phys 54:015203. doi:10.1088/1361-6463/abb8ae.
  • Li, X., B.-Q. He, and H. Zhao. 2020. Effect of direct injection dimethyl ether on the micro-flame ignited (MFI) hybrid combustion characteristics of an optical gasoline engine at ultra-lean conditions. Fuel Process. Tech. 203:106383. doi:10.1016/j.fuproc.2020.106383.
  • Liu, Y.-D., M. Jia, M.-Z. Xie, and B. Pang. 2013. Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation. Energ. Fuel 27:4899–909. doi:10.1021/ef4009955.
  • Magboltz, G. http://garfield.web.cern.ch/garfield/help/garfield_41.html 18 Jan. 2021
  • Merola, S. S., L. Marchitto, C. Tornatore, G. Valentino, and A. Irimescu. 2014. Optical characterization of combustion processes in a DISI engine equipped with plasma-assisted ignition system. Appl. Therm. Eng. 69 (1–2):177–87. doi:10.1016/j.applthermaleng.2014.04.046.
  • Ning, D., Y. Shoshin, J. A. Van Oijen, G. Finotello, and L. P. H. De Goey. 2021. Burn time and combustion regime of laser-ignited single iron particle. Combust. Flame 230:111424. doi:10.1016/j.combustflame.2021.111424.
  • Pancheshnyi, S., M. Nudnova, and A. Starikovskii. 2005. Development of a cathode-directed streamer discharge in air at different pressures: Experiment and comparison with direct numerical simulation. Phys. Rev. E. 71 (1):016407. doi:10.1103/PhysRevE.71.016407.
  • Pavel, N., M. Bärwinkel, P. Heinz, D. Brüggemann, G. Dearden, G. Croitoru, and O. V. Grigore. 2018. Laser ignition - Spark plug development and application in reciprocating engines. Prog. Quant. Electron 58:1–32. doi:10.1016/j.pquantelec.2018.04.001.
  • Popov, N. A. 2008. Effect of a pulsed high-current discharge on hydrogen-air mixtures. Plasma Phys. Rep. 34 (5):376–91. doi:10.1134/S1063780X08050048.
  • Rousso, A., S. Yang, J. Lefkowitz, W. Sun, and Y. Ju. 2017. Low temperature oxidation and pyrolysis of n-heptane in nanosecond-pulsed plasma discharges. Proc. Combust. Inst 36:4105–12. doi:10.1016/j.proci.2016.08.084.
  • Santos, N. D. S. A., C. E. C. Alvarez, V. R. Roso, J. G. C. Baeta, and R. M. Valle. 2019. Combustion analysis of a SI engine with stratified and homogeneous pre-chamber ignition system using ethanol and hydrogen. Appl. Therm. Eng. 160:113985. doi:10.1016/j.applthermaleng.2019.113985.
  • Shiraishi, T., A. Kakuho, T. Urushihara, C. Cathey, T. Tang, and M. Gundersen. 2008. A study of volumetric ignition using high-speed plasma for improving lean combustion performance in internal combustion engines. SAE International, 2008-01-0466.
  • Shiraishi, T., and T. Urushihara. 2011. Fundamental analysis of combustion initiation characteristics of low temperature plasma ignition for internal combustion gasoline engine. SAE International, 2011-01-0660.
  • Starikovskaia, S. M. 2006. Plasma assisted ignition and combustion. J. Phys. D: Appl. Phys 39:R265–R299. doi:10.1088/0022-3727/39/16/R01.
  • Starikovskaia, S. M., N. B. Anikin, I. N. Kosarev, N. A. Popov, and A. Y. Starikovskii 2006. Analysis of Ignition by nonequilibrium sources. Ignition of homological series of hydrocarbons by volume nanosecond discharge. 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada.
  • Sun, W., M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju. 2012. Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits. Combust. Flame. 159 (1):221–29. doi:10.1016/j.combustflame.2011.07.008.
  • Tsolas, N., R. A. Yetter, and I. V. Adamovich. 2017. Kinetics of plasma assisted pyrolysis and oxidation of ethylene. Part 2: Kinetic modeling studies. Combust. Flame 176:462–78. doi:10.1016/j.combustflame.2016.10.023.
  • Tsuboi, S., S. Miyokawa, M. Matsuda, T. Yokomori, and N. Iida. 2019. Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine. Appl. Energy 250:617–32. doi:10.1016/j.apenergy.2019.05.036.
  • Wang, H., D. Delvescovo, Z. Zheng, M. Yao, and R. D. Reitz. 2015. Reaction mechanisms and HCCI combustion processes of mixtures of n-heptane and the butanols. Front. Mech. Eng 1. doi:10.3389/fmech.2015.00003.
  • Yu, J.-L., L.-M. He, W. Ding, Z.-C. Zhao, and H.-L. Zhang. 2016. Research on the impacts of air temperature on the evolution of nanosecond pulse discharge products. Appl. Therm. Eng 98:265–70. doi:10.1016/j.applthermaleng.2015.12.013.
  • Zhong, H., X. Mao, A. C. Rousso, C. L. Patrick, C. Yan, W. Xu, Q. Chen, G. Wysocki, and Y. Ju. 2021. Kinetic study of plasma-assisted n-dodecane/O2/N2 pyrolysis and oxidation in a nanosecond-pulsed discharge. Proc. Combust. Inst 38:6521–31. doi:10.1016/j.proci.2020.06.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.