168
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modeling of Thermonuclear Fusion Flames: Parametric Transition to Detonation

, &
Pages 3615-3626 | Received 11 Jul 2021, Accepted 14 Jan 2022, Published online: 28 Feb 2022

References

  • Buckmaster, J., G. Joulin, and P. Ronney. 1990. The structure and stability of nonadiabatic flame balls. Combust. Flame 79 (3–4):381–92. doi:10.1016/0010-2180(90)90147-J.
  • Bychkov, V. V., and M. A. Liberman. 1995. Thermal instability and pulsations of the flame front in white dwarfs. Astrophysical J. 451:711–16. doi:10.1086/176257.
  • Clavin, P., and G. Searby. 2016. Combustion Waves and Fronts in Flows. Cambridge UK: Cambridge University Press.
  • Clavin, P., and H. Tofaili. 2021. A one-dimensional model for deflagration to detonation transition on the tip of elongated flames in tubes. Combust. Flame 292:111522. doi:10.1016/j.combustflame.2021.111522.
  • Deshaies, B., and G. Joulin. 1989. Flame-speed sensitivity to temperature changes and the deflagration-to-detonation transition. Combust. Flame 77 (2):201–12. doi:10.1016/0010-2180(89)90037-0.
  • Fowler, W., G. Caughlan, and B. Zimmerman. 1975. Thermonuclear reaction rates, II. Annu. Rev. Astron. Astrophys. 13 (1):69–112. doi:10.1146/annurev.aa.13.090175.000441.
  • Gamezo, V. N., A. Y. Poludnenko, and E. S. Oran 2011. One-dimensional evolution of fast flames, Proceedings of the 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS). Irvine, CA, paper 330.
  • Glazyrin, S. I., S. I. Blinnikov, and A. D. Dolgov. 2013. Flame fronts in Type Ia supernovae and their pulsational stability. Mon.Not.R.Astron.Soc. 433 (4):2840–49. doi:10.1093/mnras/stt909.
  • Gordon, P. V., L. Kagan, and G. Sivashinsky. 2020a. Parametric transition from deflagration to detonation revisited: Planar geometry. Combust. Flame 211:465–76. doi:10.1016/j.combustflame.2019.10.011.
  • Gordon, P. V., L. Kagan, and G. Sivashinsky. 2020b. Parametric transition from deflagration to detonation revisited: Spherical geometry. Combust. Flame 219:405–16. doi:10.1016/j.combustflame.2020.05.015.
  • Gordon, P. V., L. Kagan, and G. Sivashinsky. 2021. Parametric transition from deflagration to detonation in stellar medium. Phys. Rev. E 103 (3):033106-1-9. doi:10.1103/PhysRevE.103.033106.
  • Kagan, L., and G. Sivashinsky. 2017. Parametric transition from deflagration to detonation. Proc. Combust. Inst. 36 (2):2709–15. doi:10.1016/j.proci.2016.09.026.
  • Kagan, L., and G. Sivashinsky. 2020. An elementary model for a self-accelerating outward propagating flame subject to the Rayleigh-Taylor instability: Transition to detonation. Fluids 5 (4):196–203. doi:10.3390/fluids5040196.
  • Khokhlov, A. M. 1995. Propagation of turbulent flames in supernovae. Astrophysical J. 449:695–713. doi:10.1086/176091.
  • Kiverin, A., and I. Yakovenko. 2020. Mechanism of transition to detonation in unconfined volumes. Acta Astronaut. 176:647–52. doi:10.1016/j.actaastro.2020.02.013.
  • Koksharov, A., V. Bykov, L. Kagan, and G. Sivashinsky. 2018. Deflagration-to-detonation transition in an unconfined space. Combust. Flame 195:163–69. doi:10.1016/j.combustflame.2018.03.006.
  • Koksharov, A., L. Kagan, and G. Sivashinsky. 2021. Deflagration-to-detonation transition in an unconfined space: Expanding hydrogen-oxygen flames. Proceedings of the Combustion Institute 38 (3):3505–11. doi:10.1016/j.proci.2020.08.051.
  • Nomoto, K., and S.-C. Leung. 2017. Thermonuclear explosions of Chandrasekhar mass white dwarfs. In Handbook of Supernovae, ed. A. Alsabti and P. Murdin, 1275–313. Berlin, Heidelberg: Springer-Verlag.
  • Poludnendko, A. Y., T. A. Gardiner, and E. S. Oran. 2011. Spontaneous transition of turbulent flames to detonations in unconfined media. Phys. Rev. Lett 107 (5):054501. doi:10.1103/PhysRevLett.107.054501.
  • Poludnenko, A. Y., J. Chambers, K. Ahmed, V. Gamezo, and B. D. Taylor. 2019. A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type Ia supernovae. Science 366 (6465):eaau 7365. doi:10.1126/science.aau7365.
  • Röpke, F. K. 2017. Combustion in thermonuclear supernova explosions. In Handbook of Supernovae, ed. A. Alsabti and P. Murdin, 1185–209. Berlin, Heidelberg: Springer-Verlag.
  • Shchelkin, K. I., and Y. K. Troshin. 1965. Gasdynamics of Combustion. Baltimore, Maryland: Mono Book Corporation.
  • Timmes, F. X., and S. E. Woosley. 1992. The conductive propagation of nuclear flames I. Degenerate C+O and O+Ne+Mg white dwarfs. Astrophysical J. 396:649–67. doi:10.1086/171746.
  • Vladimirova, N., and R. Rosner. 2003. Model flames in Boussinesq limit: The effect of feedback. Phys. Rev. E 67 (6):0066305. doi:10.1103/PhysRevE.67.066305.
  • Woosley, S. E., A. R. Kerstein, V. Sankaran, A. J. Aspden, and F. K. Röpke. 2009. Type Ia supernovae: Calculation of turbulent flames using the linear eddy model. Astrophysical J. 704 (1):255–73. doi:10.1088/0004-637X/704/1/255.
  • Xing, G., Y. Zhao, M. Modestov, C. Zhou, Y. Gao, and C. K. Law. 2017 8. Thermal-diffusional instability in white dwarf flames: Regimes of flame pulsation. Astrophysical J. 841 (1):21. doi:10.3847/1538-4357/aa6db2.
  • Zeldovich, Y. B., G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze. 1985. The Mathematical Theory of Combustion and Explosions. New York, Plenum: Consultants Bureau.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.