123
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Large Activation Energy Analysis of Nonadiabatic Strained Premixed Laminar Flames with Nonunity Lewis Numbers

&
Pages 3707-3752 | Received 07 Oct 2021, Accepted 14 Jan 2022, Published online: 06 Mar 2022

References

  • Bechtold, J. K., and M. Matalon. 1999. Effects of stoichiometry on stretched premixed flames. Combust. Flame 119 (3):217–32. doi:10.1016/S0010-2180(99)00053-X.
  • Bush, W. B., and F. E. Fendell. 1970. Asymptotic analysis of laminar flame propagation for general Lewis numbers. Combust. Sci. Technol 1 (6):421–28. doi:10.1080/00102206908952222.
  • Carpio, J., A. Liñán, A. L. Sánchez, and F. A. Williams. 2017. Aerodynamics of axisymmetric counterflowing jets. Combust. Flame 177:137–43. doi:10.1016/j.combustflame.2016.12.005.
  • Carpio, J., D. Martínez-Ruiz, A. Liñán, A. L. Sánchez, and F. A. Williams. 2020. Hysteresis in the vaporization-controlled inertial regime of nonpremixed counterflow spray combustion. Combust. Sci. Technol 192 (3):433–56. doi:10.1080/00102202.2019.1566227.
  • Cash, J. R., and A. H. Karp. 1990. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Software 16 (3):201–22. doi:10.1145/79505.79507.
  • Continillo, G., and W. A. Sirignano. 1990. Counterflow spray combustion modeling. Combust. Flame 81 (3–4):325–40. doi:10.1016/0010-2180(90)90029-Q.
  • Correa, S. M. 1993. A review of NOx formation under gas-turbine combustion conditions. Combust. Sci. Technol. 87 (1–6):329–62. doi:10.1080/00102209208947221.
  • Darabiha, N., and S. Candel. 1992. The influence of the temperature on extinction and ignition limits of strained hydrogen-air diffusion flames. Combust. Sci. Technol. 86 (1–6):67–85. doi:10.1080/00102209208947188.
  • Egolfopoulos, F. N., N. Hansen, Y. Ju, K. Kohse-Höinghaus, C. K. Law, and F. Qi. 2014. Advances and challenges in laminar flame experiments and implications for combustion chemistry. Prog. Energ. Combust. 43:36–67. doi:10.1016/j.pecs.2014.04.004.
  • Fernández-Galisteo, D., A. L. Sánchez, A. Liñán, and F. A. Williams. 2009. One-step reduced kinetics for lean hydrogen-air deflagration. Combust. Flame 156 (5):985–96. doi:10.1016/j.combustflame.2008.10.009.
  • Fernández-Tarrazo, E., A. L. Sánchez, A. Liñán, and F. A. Williams. 2006. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame 147 (1–2):32–38. doi:10.1016/j.combustflame.2006.08.001.
  • Fernández-Tarrazo, E., A. L. Sánchez, A. Liñán, and F. A. Williams. 2011. The structure of lean hydrogen-air flame balls. Proc. Combust. Inst. 33 (1):1203–10. doi:10.1016/j.proci.2010.05.086.
  • Fernández-Tarrazo, E., A. L. Sánchez, A. Liñán, and F. A. Williams. 2012. Flammability conditions for ultra-lean hydrogen premixed combustion based on flame-ball analyses. Int. J. Hydrogen Energ. 37 (2):1813–25. doi:10.1016/j.ijhydene.2011.10.037.
  • Ferri, A. 1958. A review of some recent developments in hypersonic flow. In Advances in Aeronautical Sciences: Proceedings of the First International Congress in the Aeronautical Sciences, Madrid, 8-13 September 1958 (p. 723). http://icas.org/ICASARCHIVE/ICAS1958/Page
  • Guo, H., Y. Ju, K. Maruta, T. Niioka, and F. Liu. 1997. Radiation extinction limit of counterflow premixed lean methane-air flames. Combust. Flame 109 (4):639–46. doi:10.1016/S0010-2180(97)00050-3.
  • Hermanns, M., M. Vera, and A. Liñán. 2007. On the dynamics of flame edges in diffusion-flame/vortex interactions. Combust. Flame 149 (1–2):32–48. doi:10.1016/j.combustflame.2006.12.012.
  • Im, H. G., J. K. Bechtold, and C. K. Law. 1996. Response of counterflow premixed flames to oscillating strain rates. Combust. Flame 105 (3):358–72. doi:10.1016/0010-2180(95)00217-0.
  • Kim, J. S., P. A. Libby, and F. A. Williams. 1992. Influences of swirl on the structure and extinction of strained premixed flames. Part II: Strong rates of rotation. Phys. Fluids A4 (2):391–408. doi:10.1063/1.858311.
  • Klimov, A. M. 1963. Laminar flame in a turbulent flow. Zhur. Prikl. Mekh. Tekhn. Fiz., 3: 49–58. Accessed 02 03, 2022. https://apps.dtic.mil/sti/pdfs/ADA200241.pdf.
  • Li, S. C., P. A. Libby, and F. A. Williams. 1993. Spray structure in counterflowing streams with and without a flame. Combust. Flame 94 (1–2):161–77. doi:10.1016/0010-2180(93)90028-2.
  • Libby, P. A., A. Liñán, and F. A. Williams. 1983. Strained premixed laminar flames with nonunity Lewis numbers. Combust. Sci. Technol. 34 (1–6):257–93. doi:10.1080/00102208308923695.
  • Libby, P. A., N. Peters, and F. A. Williams. 1989. Cylindrical premixed laminar flames. Combust. Flame 75 (3–4):265–80. doi:10.1016/0010-2180(89)90043-6.
  • Libby, P. A., and F. A. Williams. 1976. Turbulent flows involving chemical reactions. Combust. Sci. Technol. 8 (1):351–76. doi:10.1146/annurev.fl.08.010176.002031.
  • Libby, P. A., and F. A. Williams. 1982. Structure of laminar flamelets in premixed turbulent flames. Combust. Flame 44 (1–3):287–303. doi:10.1016/0010-2180(82)90079-7.
  • Libby, P. A., and F. A. Williams. 1983. Strained premixed laminar flames under nonadiabatic conditions. Combust. Sci. Technol. 31 (1–2):1–42. doi:10.1080/00102208308923629.
  • Libby, P. A., and F. A. Williams. 1987. Premixed laminar flames with general rates of strain. Combust. Sci. Technol. 54 (1–6):237–73. doi:10.1080/00102208708947055.
  • Libby, P. A., and F. A. Williams, Eds. 1994. Turbulent reacting flows. New York: Academic Press.
  • Libby, P. A., F. A. Williams, and G. I. Sivashinsky. 1990. Influences of swirl on the structure and extinction of strained premixed flames. Part I: Moderate rates of rotation. Phys. Fluids A2 (7):1213. doi:10.1063/1.857622.
  • Liñán, A. 1974. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronautica 1 (7–8):1007–39. doi:10.1016/0094-5765(74)90066-6.
  • Liñán, A., and A. Crespo. 1976. An asymptotic analysis of unsteady diffusion flames for large activation energies. Combust. Sci. Technol. 14 (1–3):95–117. doi:10.1080/00102207608946750.
  • Liñán, A., and I. Da Riva. 1964. Chemical nonequilibrium effects in hypersonic aerodynamics. International Council of the Aeronautical Sciences: Third Congress 1962 Stockholm (p. 699). Accessed 02 03, 2022. https://www.icas.org/ICASARCHIVE/ICAS1962/ICAS-62-31%20Linan%20et%20al.pdf
  • Liñán, A., D. Martínez-Ruiz, A. L. Sánchez, and J. Urzay. 2015. Regimes of spray vaporization and combustion in counterflow configurations. Combust. Sci. Technol. 187 (1–2):103–31. doi:10.1080/00102202.2014.971949.
  • Liñán, A., D. Martínez-Ruiz, M. Vera, and A. L. Sánchez. 2017. The large-activation-energy analysis of extinction of counterflow diffusion flames with non-unity Lewis numbers of the fuel. Combust. Flame 175:91–106. doi:10.1016/j.combustflame.2016.06.030.
  • Liñán, A., M. Vera, and A. L. Sánchez. 2015. Ignition, liftoff, and extinction of gaseous diffusion flames. Annu. Rev. Fluid Mech. 47 (1):293–314. doi:10.1146/annurev-fluid-010814-014711.
  • Liñán, A., and F. A. Williams. 1993. Fundamental aspects of combustion. United States: Oxford University Press.
  • Liu, Y., X. Sun, V. Sethi, D. Nalianda, Y. G. Li, and L. Wang. 2017. Review of modern low emissions combustion technologies for aero gas turbine engines. Prog. Aerosp. Sci. 94:12–45. doi:10.1016/j.paerosci.2017.08.001.
  • Lundberg, K. O. 1964. Speed and safety in civil aviation. International Council of the Aeronautical Sciences: Third Congress 1962 (p. 1) Stockholm. Accessed 02 03, 2022. https://www.icas.org/ICASARCHIVE/ICAS1962/ICAS-62-01%20Lundberg.pdf
  • Matkowsky, B. J., and G. I. Sivashinsky. 1979. An asymptotic derivation of two models in flame theory associated with the constant density approximation. SIAM J. Appl. Math. 37 (3):686–99. doi:10.1137/0137051.
  • Mellado, J. D., A. L. Sánchez, J. S. Kim, and A. Liñán. 2000. Branched-chain ignition in strained mixing layers. Combust. Theor. Model. 4:265–88. doi:10.1088/1364-7830/4/3/303.
  • Niemann, U., K. Seshadri, and F. A. Williams. 2015. Accuracies of laminar counterflow flame experiments. Combust. Flame 162 (4):1540–49. doi:10.1016/j.combustflame.2014.11.021.
  • Peters, N. 1988. Laminar flamelet concepts in turbulent combustion. Symp. (Int.) Combust. 21 (1):1231–50. doi:10.1016/S0082-0784(88)80355-2.
  • Peters, N. 2000. Turbulent Combustion. Cambridge: Cambridge University Press.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion. Philadelfia: R. T. Edwards, Inc.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 1992. Numerical recipes in Fortran 77: The art of scientific computing. 2nd ed. Cambridge: Cambridge University Press.
  • Renard, P. H., D. Thevenin, J. C. Rolon, and S. Candel. 2000. Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci. 26 (3):225–82. doi:10.1016/S0360-1285(00)00002-2.
  • Ronney, P. D. 1998. Understanding combustion processes through microgravity research. Symp. (Int.) Combust 27 (2):2485–506. doi:10.1016/S0082-0784(98)80101-X.
  • Rosner, D. E., R. Israel, and B. La Mantia. 2000. “Heavy” species Ludwig-Soret transport effects in air/breathing combustion. Combust. Flame 123 (4):547–60. doi:10.1016/S0010-2180(00)00179-6.
  • Sánchez, A. L., B. Balakrishnan, A. Liñán, and F. A. Williams. 1996. Relationships between bifurcation and numerical analyses for ignition of hydrogen-air diffusion flames. Combust. Flame 105 (4):569–90. doi:10.1016/0010-2180(95)00241-3.
  • Sánchez, A. L., A. Lépinette, M. Bollig, A. Liñán, and B. Lázaro. 2000. The reduced kinetic description of lean premixed combustion. Combust. Flame 123 (4):436–64. doi:10.1016/S0010-2180(00)00177-2.
  • Sánchez, A. L., and F. A. Williams. 2014. Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energ. Combust. 41:1–55. doi:10.1016/j.pecs.2013.10.002.
  • Santoro, V. S., D. C. Kyritsis, and A. Gomez. 2000. An experimental study of vortex-flame interaction in counterflow spray diffusion flames. Proc. Combust. Inst. 28 (1):1023–30. doi:10.1016/S0082-0784(00)80310-0.
  • Santoro, V. S., D. C. Kyritsis, A. Liñán, and A. Gomez. 2000. Vortex-induced extinction behavior in methanol gaseous flames: A comparison with quasi-steady extinction. Proc. Combust. Inst. 28 (2):2109–16. doi:10.1016/S0082-0784(00)80620-7.
  • Shay, M. L., and P. D. Ronney. 1998. Nonpremixed edge flames in spatially varying straining flows. Combust. Flame 112 (1–2):171–80. doi:10.1016/S0010-2180(97)81765-8.
  • Sivashinsky, G. I. 1976. On a distorted flame front as a hydrodynamic discontinuity. Acta Astronautica 3 (11–12):889–918. doi:10.1016/0094-5765(76)90001-1.
  • Vera, M. 2004. Efectos no estacionarios, de difusión preferencial y de liberación de calor en modelos de llamas laminares. Ph. D. Thesis, Universidad Politécnica de Madrid. Accessed 02 03, 2022. https://oa.upm.es/177/1/marcos_vera_coello_1.pdf.
  • Vera, M., and A. Liñán. 2004. On the interaction of vortices with mixing layers. Phys. Fluids 16 (7):2237–54. doi:10.1063/1.1718956.
  • Von Kármán, T. 1959. Some significant developments in aerodynamics since 1946: The first Daniel and Florence Guggenheim Memorial Lecture. J. Aerosp.Sci. 26 (3):129–44. doi:10.2514/8.7977.
  • Warnatz, J., and N. Peters. 1984. Stretch effects in planar premixed hydrogen-air flames. Progr. Astronaut. Aero. 95:61–74. doi:10.2514/5.9781600865701.0061.0074.
  • Weiss, A. D., W. Coenen, and A. L. Sánchez. 2017. Aerodynamics of planar counterflowing jets. J. Fluid Mech. 821:1–30. doi:10.1017/jfm.2017.192.
  • Weiss, A. D., M. Vera, A. Liñán, A. L. Sánchez, and F. A. Williams. 2018. A novel formulation for unsteady counterflow flames using a thermal-conductivity-weighted coordinate. Combust. Theor. Model 22 (1):185–201. doi:10.1080/13647830.2017.1397756.
  • Westbrook, C. K. 2000. Chemical kinetics of hydrocarbon ignition in practical combustion systems. Proc. Combust. Inst. 28 (2):1563–77. doi:10.1016/S0082-0784(00)80554-8.
  • Williams, F. A. 1985. Combustion theory. 2nd ed. CA: Benjamin/ Cumings,Menlo Park.
  • Williams, F. A. 1992. The role of theory in combustion science. Symp. (Int.) Combust. 24 (1):1–17. doi:10.1016/S0082-0784(06)80006-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.