376
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A Combined Experimental and Computational Study of Soot Formation in Normal and Microgravity Conditions

, , , , , , & show all
Pages 3882-3907 | Received 17 Nov 2021, Accepted 08 Jan 2022, Published online: 29 Mar 2022

References

  • Bennett, B. A. V., C. S. McEnally, L. D. Pfefferle, M. D. Smooke, and M. B. Colket. 2001. Computational and experimental study of axisymmetric coflow partially premixed ethylene/air flames. Combust. Flame 127 (1–2):2004–22. doi:10.1016/S0010-2180(01)00306-6.
  • Bundy, M., G. W. Mulholland, S. Manzello, J. Yang, J. H. Scott, and Y. Sivathanu. 2003. Microgravity superagglomerates produced by silane and acetylene. Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems.
  • Cao, S., B. A. V Bennett, and M. D. Smooke. 2015. MC-Smooth: A mass-conserving, smooth vorticity-velocity formulation for multidimensional flows. Combust. Theory Model 19 (6):657–95. doi:10.1080/13647830.2015.1067722.
  • Cignoli, F., S. De Iuliis, V. Manta, and G. Zizak. 2001. Two-dimensional two-wavelength emission technique for soot diagnostics. Appl. Opt. 40 (30):5370. doi:10.1364/AO.40.005370.
  • Connelly, B. C, B. A. V Bennett, M. D. Smooke, and M. B. Long. 2009. A paradigm shift in the interaction of experiments and computations in combustion research. Proceedings of the Combust. Inst. 32 (1):879–86. doi:10.1016/j.proci.2008.05.066.
  • Das, D. D., W. J. Cannella, C. S. McEnally, C. J. Mueller, and L. D. Pfefferle. 2017. Two-dimensional soot volume fraction measurements in flames doped with large hydrocarbons. Proceedings of the Combust. Inst. 36 (1):871–79. doi:10.1016/j.proci.2016.06.047.
  • Dasch, C. J. 1992. One-dimensional tomography: A comparison of Abel, onion-peeling, and filtered backprojection methods. Applied Optics 31 (8):1146–52. doi:10.1364/AO.31.001146.
  • De Iuliis, S., M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak. 1998. Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation. Combust. Flame 115 (1–2):253–61. doi:10.1016/S0010-2180(97)00357-X.
  • Deuflhard, P. 1974. A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numerische Mathematik 22:289–315. doi:10.1007/BF01406969.
  • Dobbins, R. R., R. J. Hall, S. Cao, B. A. V. Bennett, M. B. Colket, and M. D. Smooke. 2015. Radiative emission and reabsorption in laminar, ethylene-fueled diffusion flames using the discrete ordinates method. Combust. Sci. Technol 187 (1–2):230–48. doi:10.1080/00102202.2014.974806.
  • Dotson, K., P. Sunderland, Z. Yuan, and D. Urban. 2011. Laminar smoke points of coflowing flames in microgravity. Fire Safety J. 46 (8):550–55. doi:10.1016/j.firesaf.2011.08.002.
  • Dreyer, J. A. H., M. Poli, N. A. Eaves, M. L. Botero, J. Akroyd, S. Mosbach, and M. Kraft. 2019a. Evolution of the soot particle size distribution along the centreline of an n-heptane/toluene co-flow diffusion flame. Combust. Flame 209:256–66. doi:10.1016/j.combustflame.2019.08.002.
  • Dreyer, J. A. H., R. I. Slavchov, E. J. Rees, J. Akroyd, M. Salamanca, S. Mosbach, and M. Kraft. 2019b. Improved methodology for performing the inverse Abel transform of flame images for color ratio pyrometry. Appl. Opt. 58 (10):2662–70. doi:10.1364/AO.58.002662.
  • Dworkin, S. B., M. D. Smooke, and V. Giovangigli. 2009. The impact of detailed multicomponent transport and thermal diffusion effects on soot formation in ethylene/air flames. Proc. Combust. Inst 32 (1):1165–72. doi:10.1016/j.proci.2008.05.061.
  • Ern, A., V. Giovangigli, D. E. Keyes, and M. D. Smooke. 1994. Towards polyalgorithmic linear system solvers for nonlinear elliptic problems. SIAM J. Sci. Comput 15 (3):681’–703. doi:10.1137/0915044.
  • Franzelli, B., M. Roussillo, P. Scouflaire, J. Bonnety, R. Jalain, T. Dormieux, S. Candel, and G. Legros. 2019. Multi-diagnostic soot measurements in a laminar diffusion flame to assess the ISF database consistency. Proceedings of the Combust. Inst. 37 (2):1355–63. doi:10.1016/j.proci.2018.05.062.
  • Fujita, O., and K. Ito. 2002. Observation of soot agglomeration process with aid of thermophoretic force in a microgravity jet diffusion flame. Exp. Therm. Fluid Sci. 26 (2–4):305–11. doi:10.1016/S0894-1777(02)00141-3.
  • Giassi, D. 2017. Optical diagnostics applied to quantitative characterization of coflow laminar diffusion flames in microgravity and normal gravity. New Haven, Connecticut: Yale University.
  • Giovangigli, V., and N. Darabiha. 1988. Vector computers and complex chemistry combustion. In Mathematical modeling in combustion and related topics, ed. C.-M. Brauner and C. Schmidt-Lainé, 491–503, Dordrecht: Nijhoff
  • Guo, H., F. Liu, and G. J. Smallwood. 2004. Soot and NO formation in counterflow ethylene/oxygen/nitrogen diffusion flames. Combustion Theory and Modelling 8 (3):475–89. doi:10.1088/1364-7830/8/3/003.
  • Hall, R. J. 1988. Computation of the radiative power loss in a sooting diffusion flame. Appl. Opt. 27 (5):809–11. doi:10.1364/AO.27.000809.
  • Hall, R. J., M. D. Smooke, and M. B. Colket. 1997a. Predictions of soot dynamics in opposed jet diffusion flames. Combust. Sci. Tech. 4:189–230.
  • Hall, R. J., M. D. Smooke, and M. B. Colket. 1997b. Predictions of soot dynamics in opposed jet diffusion flames. In Physical and chemical aspects of combustion: A tribute to Irvin Glassman, ed. R. F. Sawyer and F. L. Dryer, 189–230. New York: Gordon and Breach.
  • Harris, S. J., and I. M. Kennedy. 1988. The coagulation of soot particles with van der Waals forces. Combust. Sci. Technol 59 (4–6):443–54. doi:10.1080/00102208808947110.
  • Herdman, J. D., B. C. Connelly, M. D. Smooke, M. B. Long, and J. H. Miller. 2011. A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames. Carbon 49 (15):5298–311. doi:10.1016/j.carbon.2011.07.050.
  • ISF Workshop (2020). URL: http://www.adelaide.edu.au/cet/isfworkshop/data-sets/laminar-flames Accessed 28-Feb-2022
  • Kee, R. J., G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller. (1986), A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties, Technical Report SAND86-8246, Sandia National Laboratories.
  • Kee, R. J., F. M. Rupley, and J. A. Miller. (1989), Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Technical Report SAND89-8009, Sandia National Laboratories.
  • Kempema, N. J., R. R. Dobbins, M. B. Long, and M. D. Smooke. 2021. Constrained-temperature solutions of coflow laminar diffusion flames. Proc. Combust. Inst 38 (2):1905–12. doi:10.1016/j.proci.2020.06.034.
  • Kempema, N. J., and M. B. Long. 2016. Combined optical and TEM investigations for a detailed characterization of soot aggregate properties in a laminar coflow diffusion flame. Combust. Flame 164:373–85. doi:10.1016/j.combustflame.2015.12.001.
  • Kempema, N. J., and M. B. Long. 2018. Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames. Opt Lett 43 (5):1103. doi:10.1364/OL.43.001103.
  • Kempema, N. J., B. Ma, and M. B. Long. 2016. Investigation of in-flame soot optical properties in laminar coflow diffusion flames using thermophoretic particle sampling and spectral light extinction. Applied Physics B 122 (9). doi:10.1007/s00340-016-6509-6.
  • Kong, W., and F. Liu. 2010. Effects of gravity on soot formation in a coflow methane/air diffusion flame. Microgravity Sci. Tech 22 (2):205–14. doi:10.1007/s12217-009-9175-z.
  • Krishnan, S. S., K.-C. Lin, and G. M. Faeth. 2000. Optical properties in the visible of overfire soot in large buoyant turbulent diffusion flames. J. Heat Transfer 122 (3):517–24. doi:10.1115/1.1288025.
  • Krishnan, S. S., K.-C. Lin, and G. M. Faeth. 2001. Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames. J. Heat Transfer 123 (2):331–39. doi:10.1115/1.1350823.
  • Kuhn, P. B., B. Ma, B. C. Connelly, M. D. Smooke, and M. B. Long. 2011. Soot and thin-filament pyrometry using a color digital camera. Proceedings of the Combust. Inst. 33 (1):743–50. doi:10.1016/j.proci.2010.05.006.
  • Liu, F., H. Guo, G. J. Smallwood, and Ö. L. Gülder. 2003. Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames. Combust. Theory Model 7 (2):301–15. doi:10.1088/1364-7830/7/2/305.
  • Ma, B., S. Cao, D. Giassi, D. P. Stocker, F. Takahashi, B. A. V. Bennett, M. D. Smooke, and M. B. Long. 2015. An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity. Proceedings of the Combust. Inst. 35 (1):839–46. doi:10.1016/j.proci.2014.05.064.
  • Ma, B., and M. B. Long. 2013. Absolute light calibration using S-type thermocouples. Proceedings of the Combust. Inst. 34 (2):3531–39. doi:10.1016/j.proci.2012.05.030.
  • Ma, B., and M. B. Long. 2014. Combined soot optical characterization using 2-D multi-angle light scattering and spectrally resolved line-of-sight attenuation and its implication on soot color-ratio pyrometry. Applied Physics B 117 (1):287–303. doi:10.1007/s00340-014-5834-x.
  • Ma, B., G. Wang, G. Magnotti, R. S. Barlow, and M. B. Long. 2014. Intensity-ratio and color-ratio thin-filament pyrometry: Uncertainties and accuracy. Combust. Flame 161 (4):908–16. doi:10.1016/j.combustflame.2013.10.014.
  • Manzello, S. L., and M. Y. Choi. 2002. Morphology of soot collected in microgravity droplet flames. Int J Heat Mass Transf 45 (5):1109–16. doi:10.1016/S0017-9310(01)00164-8.
  • Markstein, G. H. 1985. Relationship between smoke point and radiant emission from buoyant turbulent and laminar diffusion flames. Symposium (International) on Combust. 20 (1):1055–61. doi:10.1016/S0082-0784(85)80595-6.
  • Maun, J. D., P. B. Sunderland, and D. L. Urban. 2007. Thin-filament pyrometry with a digital still camera. Appl. Opt. 46 (4):483–88. doi:10.1364/AO.46.000483.
  • Montgomery, M. J., D. D. Das, C. S. McEnally, and L. D. Pfefferle. 2019. Analyzing the robustness of the yield sooting index as a measure of sooting tendency. Proceedings of the Combust. Inst. 37 (1):911–18. doi:10.1016/j.proci.2018.06.105.
  • Mueller, M., and H. Pitsch. 2013. Large eddy simulation of soot evolution in an aircraft combustor. Phys. Fluids 25 (11):110812. doi:10.1063/1.4819347.
  • Ramanath, R., W. E. Snyder, G. L. Bilbro, and W. A Sander. 2002. Demosaicking methods for Bayer color arrays. J. Electron. Imaging 11 (3):306. doi:10.1117/1.1484495.
  • Reimann, J., S. A. Kohlmann, and S. Will. 2010. Investigations on soot formation in heptane jet diffusion flames by optical techniques. Microgravity Sci. Tech 22 (4):499–505. doi:10.1007/s12217-010-9204-y.
  • Satija, A., Z. Chang, A. Lowe, L. M. Thomas, A. R. Masri, and R. P. Lucht. 2019. CARS thermometry in laminar sooting ethylene-air co-flow diffusion flames with nitrogen dilution. Combust. Flame 208:37–44. doi:10.1016/j.combustflame.2019.06.025.
  • Shaddix, C. R., and T. C. Williams. 2009. Soot structure and dimensionless extinction coefficient in diffusion flames: Implications for index of refraction. In ‘Combustion-Generated Fine Carbonaceous Particles,’ eds. H. Bockhorn, A. D’Anna, A. F. Sarofim, and H. Wang, 17–33. Karlsruhe, Germany: University Press.
  • Simonsson, J., N.-E. Olofsson, S. Török, P.-E. Bengtsson, and H. Bladh. 2015. Wavelength dependence of extinction in sooting flat premixed flames in the visible and near-infrared regimes. Applied Physics B 119 (4):657–67. doi:10.1007/s00340-015-6079-z.
  • Sivathanu, Y. R., and J. P. Gore. 1997. Effects of gas-band radiation on soot kinetics in laminar methane/air diffusion flame. Combust. Flame 110 (1–2):256–63. doi:10.1016/S0010-2180(97)00065-5.
  • Smooke, M. D. 1982. Solution of burner-stabilized premixed laminar flames by boundary value methods. J. Comp. Phys 48 (1):72–105. doi:10.1016/0021-9991(82)90036-5.
  • Smooke, M. D. 1983. Error estimate for the modified Newton method with applications to the solution of nonlinear, two-point boundary-value problems. J. Optim. Theory Appl 39 (4):489–511. doi:10.1007/BF00933755.
  • Smooke, M. D., R. J. Hall, M. B. Colket, J. Fielding, M. B. Long, C. S. McEnally, and L. D. Pfefferle. 2004. Investigation of the transition from lightly sooting towards heavily sooting coflow ethylene diffusion flames. Combust. Theor. Model 8 (3):593–606. doi:10.1088/1364-7830/8/3/009.
  • Smooke, M. D., M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall. 2005. Soot formation in laminar diffusion flames. Combust. Flame 143 (4):613–28. doi:10.1016/j.combustflame.2005.08.028.
  • Smooke, M. D., C. S. McEnally, L. D. Pfefferle, R. J. Hall, and M. B. Colket. 1999. Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combust. Flame 117 (1–2):117–39. doi:10.1016/S0010-2180(98)00096-0.
  • Smooke, M. D., R. E. Mitchell, and D. E. Keyes. 1989. Numerical solution of two-dimensional axisymmetric laminar diffusion flames. Combust. Sci. Technol 67 (4):85–122. doi:10.1080/00102208908924063.
  • Sun, C. J., C. J. Sung, H. Wang, and C. K. Law. 1996. On the structure of nonsooting counterflow ethylene and acetylene diffusion flames. Combust. Flame 107 (4):321–35. doi:10.1016/S0010-2180(96)00055-7.
  • van der Vorst, H. A. 1992. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Comput 13 (2):631–44. doi:10.1137/0913035.
  • Wu, B., S. P. Roy, X. Zhao, and M. F. Modest. 2017. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame. J. Quant. Spectrosc. Radiat. Transfer 197:154–65. doi:10.1016/j.jqsrt.2017.03.017.
  • Yale Coflow Diffusion Flames (2020). URL: http://guilford.eng.yale.edu/yalecoflowflames/index.html Accessed 28-Feb-2022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.