245
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A Kinetic Mechanism for CF3I Inhibition of Methane–Air Flames

, &
Pages 3908-3922 | Received 23 Nov 2021, Accepted 09 Feb 2022, Published online: 08 Mar 2022

References

  • Atkinson, R., D. Baulch, R. Cox, J. Crowley, R. Hampson, R. Hynes, M. Jenkin, M. Rossi, and J. Troe. 2007. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens. Atmos Chem and Phys 7 (4):981. doi:10.5194/acp-7-981-2007.
  • Atkinson, R., D. Baulch, R. Cox, R. Hampson Jr, J. Kerr, and J. Troe. 1992. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. Journal of Physical and Chemical Reference Data 21 (6):1125. doi:10.1063/1.555918.
  • Babushok, V., G. T. Linteris, D. R. Burgess Jr, and P. T. Baker. 2015. Hydrocarbon flame inhibition by C3H2F3Br (2-BTP). Combustion and Flame 162 (4):1104. doi:10.1016/j.combustflame.2014.10.002.
  • Babushok, V., T. Noto, D. R. F. Burgess, A. Hamins, and W. Tsang. 1996. Influence of CF3I, CF3Br, and CF3H on the high-temperature combustion of methane. Combustion and Flame 107 (4):351. doi:10.1016/S0010-2180(96)00052-1.
  • Babushok, V. I., and W. Tsang. 2000. Inhibitor rankings for hydrocarbon combustion. Combustion and Flame 123 (4):488. doi:10.1016/S0010-2180(00)00168-1.
  • Battin-Leclerc, F., P. A. Glaude, G. M. Come, and F. Baronnet. 1997. Inhibiting effect of CF3I on the reaction between CH4 and O2 in a jet-stirred reactor. Combustion and Flame 109 (3):285. doi:10.1016/S0010-2180(96)00168-X.
  • Baulch, D., J. Duxbury, S. Grant, and D. Montague 1981. Evaluated kinetic data for high temperature reactions. Volume 4. Homogeneous gas phase reactions of halogen-and cyanide-containing species.
  • Becerra, R., I. W. Carpenter, and R. Walsh. 1997. Time-resolved studies of the kinetics of the reactions of CHO with HI and HBr:  Thermochemistry of the CHO radical and the C−H bond strengths in CH2O and CHO. J Phys Chem A 101 (23):4185. doi:10.1021/jp970443y.
  • Bell, I. H., and M. O. Mclinden. 2020. The status of thermodynamic data and models for CF3I and its mixtures. International journal of thermophysics 41(9), 1–10.
  • Berry, R., and P. Marshall. 1998. A computational study of the reaction kinetics of methyl radicals with trifluorohalomethanes. International Journal of Chemical Kinetics 30 (3):179. doi:10.1002/(SICI)1097-4601(1998)30:3<179::AID-KIN2>3.0.CO;2-P.
  • Berry, R., J. Yuan, A. Misra, and P. Marshall. 1998. Experimental and computational investigations of the reaction of OH with CF3I and the enthalpy of formation of HOI. J Phys Chem A 102:5182.
  • Burcat, A., and B. Ruscic. 2021. Third millenium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Argonne, IL: Argonne National Laboratory.
  • Burgess, D. R., M. R. Zachariah, W. Tsang, and P. R. Westmoreland. 1995. Thermochemical and chemical kinetic data for fluorinated hydrocarbons. Progress in Energy and Combustion Science 21:453.
  • Denisov, E., and V. Azatyan. 2003. Kinetic parameters for direct atomic substitution reactions. Kinetics and Catalysis 44 (1):1. doi:10.1023/A:1022508731084.
  • Dlugogorski, B. Z., R. K. Hichens, and E. M. Kennedy. 2002. Inert hydrocarbon-based refrigerants. Fire Safety Journal 37 (1):53. doi:10.1016/S0379-7112(01)00023-6.
  • Friedrichs, G., D. F. Davidson, and R. K. Hanson. 2002. Direct measurements of the reaction H+ CH2O→ H2+ HCO behind shock waves by means of Vis–UV detection of formaldehyde. International Journal of Chemical Kinetics 34 (6):374. doi:10.1002/kin.10059.
  • Goodwin, D. G., H. K. Moffat, and R. L. Speth 2016. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. , Version 2.1.1. Pasedena: California Institute of Technology h ttp:/www.cantera.org [last a ccessed 6/30/2021].
  • Herron, J. T. 1988. Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with saturated organic compounds in the gas phase. Journal of Physical and Chemical Reference Data 17 (3):967. doi:10.1063/1.555810.
  • Knox, J. H., and R. G. Musgrave. 1967. Iodination of alkanes: Ethane, propane and isobutane. Transactions of the Faraday Society 63:2201. doi:10.1039/tf9676302201.
  • Kondratiev, V. 1972. Rate constants of gas phase reactions-reference book trans. In RM fiestrom, office standard reference data, NBS, national technical information service, Washington, DC USA.
  • Lifshitz, A., C. Tamburu, and F. Dubnikova. 2008. Reactions of 1-naphthyl radicals with ethylene. Single pulse shock tube experiments, quantum chemical, transition state theory, and multiwell calculations. J Phys Chem A 112 (5):925. doi:10.1021/jp077289s.
  • Linteris, G. T., D. R. Burgess, F. Takahashi, V. R. Katta, H. K. Chelliah, and O. Meier. 2012. Stirred reactor calculations to understand unwanted combustion enhancement by potential halon replacements. Combustion and Flame 159 (3):1016. doi:10.1016/j.combustflame.2011.09.011.
  • Linteris, G. T., M. D. Rumminger, V. Babushok, and W. Tsang. 2000. Flame inhibition by ferrocene and blends of inert and catalytic agents. Proceedings of the Combustion Institute 28 (2):2965. doi:10.1016/S0082-0784(00)80722-5.
  • Linteris, G. T., and L. Truett. 1996. Inhibition of premixed methane-air flames by fluoromethanes. Combustion and Flame 105 (1–2):15. doi:10.1016/0010-2180(95)00152-2.
  • Louis, F., T. C. Allison, C. A. Gonzalez, and J.-P. Sawerysyn. 2001. Computational study of the reactions of methane with XO radicals (X= F, Cl, or Br): Implications in combustion chemistry. J Phys Chem A 105 (17):4284. doi:10.1021/jp0028498.
  • Louis, F., C. A. Gonzalez, and J.-P. Sawerysyn. 2003. Ab initio study of the oxidation reaction of CO by ClO radicals. J Phys Chem A 107 (46):9931. doi:10.1021/jp0348272.
  • Luo, C., B. Z. Dlugogorski, and E. M. Kennedy. 2008b. Influence of CF3I and CBrF3 on methanol-air and methane-air premixed flames. Fire Technol 44 (3):221. doi:10.1007/s10694-007-0033-5.
  • Luo, C., B. Dlugogorski, E. Kennedy, and B. Moghtaderi. 2008a. Inhibition of premixed methane-air flames with CF3I. Chemical Product and Process Modeling 4 (article):12.
  • Lv, Z. J., Z. Yang, H. Y. Ma, Y. B. Chen, and Y. Zhang August 2021. Flame retardant effect of the halohydrocarbons on the mildly flammable refrigerant difluoromethane. J Fluor Chem 248 .
  • Marshall, P., A. Misra, and R. Berry. 1997. Computational studies of the reactions of CH3I with H and OH. Chem Phys Lett 265 (1–2):48. doi:10.1016/S0009-2614(96)01400-5.
  • Marshall, S. P., S. Taylor, C. R. Stone, T. J. Davies, and R. F. Cracknell. 2011. Laminar burning velocity measurements of liquid fuels at elevated pressures and temperatures with combustion residuals. Combust. Flame 158 (10):1920. doi:10.1016/j.combustflame.2011.02.016.
  • Mathieu, O., J. Goulier, F. Gourmel, M. S. Mannan, N. Chaumeix, and E. L. Petersen. 2015. Experimental study of the effect of CF3I addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane. Proceedings of the Combustion Institute 35 (3):2731. doi:10.1016/j.proci.2014.05.096.
  • Mečiarová, K., M. Šulka, S. Canneaux, F. Louis, and I. Černušák. 2011. A theoretical study of the kinetics of the forward and reverse reactions HI+ CH3 = I + CH4. Chem Phys Lett 517 (4–6):149. doi:10.1016/j.cplett.2011.10.029.
  • Moore, T. A., S. R. Skaggs, M. R. Corbitt, R. E. Tapscott, D. S. Dierdorf, and C. J. Kibert. 1994. The development of CF3I as a Halon replacement. Albuquerque, NM: NMERI.
  • Noto, T., V. Babushok, D. R. Burgess Jr., A. Hamins, W. Tsang, and A. W. Miziolek. 1996. Effect of halogenated flame inhibitors on C1-C2 organic flames. Proceedings of the Combustion Institute 26 (1):1377. doi:10.1016/S0082-0784(96)80357-2.
  • Noto, T., V. Babushok, A. Hamins, and W. Tsang. 1998. Inhibition effectiveness of halogenated compounds. Combustion and Flame 112 (1–2):147. doi:10.1016/S0010-2180(97)81763-4.
  • Pagliaro, J. L., G. T. Linteris, and V. I. Babushok. 2016. Premixed flame inhibition by C2HF3Cl2 and C2HF5. Combustion and Flame 163:54. doi:10.1016/j.combustflame.2015.08.015.
  • Pickard, J., and A. Rodgers. 1983. Kinetics of the gas-phase reaction CH3F + I2 ⇆ CH2FI + HI: The C–H bond dissociation energy in methyl and methylene fluorides. International Journal of Chemical Kinetics 15 (6):569. doi:10.1002/kin.550150607.
  • Saito, K., H. Tahara, O. Kondo, T. Yokubo, T. Thigashihara, and I. Murakami. 1980. The thermal gas-phase decomposition of methyl iodide. Bull. Chem. Soc. Jpn. 53 (5):1335. doi:10.1246/bcsj.53.1335.
  • Sander, S. P., J. Abbatt, J. Barker, J. Burkholder, R. Friedl, D. Golden, R. Huie, C. Kolb, M. Kurylo, G. Moortgat, et al. 2011. Chemical kinetics and photochemical data for use in atmospheric studies, evaluation no. 17, JPL Publication 10-6. Pasadena, CA: Jet Propulsion Laboratory.
  • Sanogo, O., J. L. Delfau, R. Akrich, and C. Vovelle. 1996. A comparative study of the structure of CF3Br and CF3I doped methane flames. Journal De Chimie Physique Et De Physico-Chimie Biologique 93:1939. doi:10.1051/jcp/1996931939.
  • Seetula, J. A. 1991. Kinetics, thermochemistry and reactivity of reactions of some polyatomic free radicals with HI, HBr, Cl₂, Br₂. Suomalainen tiedeakatemia.
  • Seetula, J. A., and D. Gutman. 1991. Kinetics of reactions of halogenated methyl radicals with hydrogen iodide. J Phys Chem 95 (9):3626. doi:10.1021/j100162a036.
  • Seetula, J., and D. Gutman. 1992. Kinetics of the CH2OH+HBr and CH2OHG+HI reactions determination of the heat of formation of CH2OH. Journal of Physical Chemistry (1952), 96 (13):5401. doi:10.1021/j100192a040.
  • Seetula, J., J. Russell, and D. Gutman. 1990. Kinetics and thermochemistry of the reactions of alkyl radicals (CH3, C2H5, i-C3H7, s-C4H9, and t-C4H9) with HI: A reconciliation of the alkyl radical heats of formation. J. Am. Chem. Soc. 112 (4):1347. doi:10.1021/ja00160a009.
  • Sehested, J., T. Ellermann, and O. J. Nielsen. 1994. A spectrokinetic study of CH2I and CH2IO2 radicals. International Journal of Chemical Kinetics 26 (2):259. doi:10.1002/kin.550260204.
  • Shah, D., C. Canosa-Mas, N. Hendy, M. Scott, A. Vipond, and R. Wayne. 2001. Discharge-flow studies of the kinetics of the reactions of CH3O with Cl, Br, I, ClO, BrO and IO using laser-induced fluorescence and resonance-fluorescence detection. Physical Chemistry Chemical Physics 3 (22):4932. doi:10.1039/b105436h.
  • Sidebottom, H., and J. Treacy. 1984. Reaction of methyl radicals with haloalkanes. International Journal of Chemical Kinetics 16 (5):579. doi:10.1002/kin.550160507.
  • Singleton, D., and R. Cvetanović. 1978. Temperature dependence of rate constants for the reactions of oxygen atoms, O(3 P), with HBr and HI. Can J Chem 56 (23):2934. doi:10.1139/v78-481.
  • Skorobogatov, G., B. Dymov, and V. Khripun. 1991. Determination of rate constants and equilibrium constants of RI↔ R+ I and I+ RI↔ I2+ R for R≢ CF3, C2F5, or C4F9. Kinetics and Catalysis 32:220.
  • Skorobogatov, G., B. Dymov, and I. Nedozrelova. 1994. Equilibrium constants and reaction rate constants of CX 3 I↔ CX 3+ I, CX 3+ I↔ I 2+ CX 3 (X = H, D) in the range of 300-800 K. Zhurnal Obshchej Khimii 64:956.
  • Smith, G. P., T. Y, and W. H 2016. Foundational Fuel Chemistry Model Version 1.0 (FFCM-1) [Online]. Stanford University. Available: http://nanoenergy.stanford.edu/ffcm1 [Accessed 2020].
  • Su, J. Z., and A. K. Kim. 2002. Suppression of pool fires using halocarbon streaming agents. Fire Technol 38 (1):7. doi:10.1023/A:1013416414094.
  • Sullivan, J. H. 1967. Mechanism of bimolecular hydrogen-iodine reaction. J. Chem. Phys. 46 (1):73. doi:10.1063/1.1840433.
  • Tapscott, R. E., S. R. Skaggs, and D. Dierdorf. 1995. Perfluoroalkyl iodides and other new-generation halon replacements. MIZIOLEK, A. W. & TSANG, W. (ed.). In Halon replacements: Technology and science.
  • Trees, D., K. Seshadri, and A. Hamins. 1995. Experimental studies of diffusion flame extinction with halogenated and inert fire suppressants. MIZIOLEK, A. W. & TSANG, W. (ed.). In Halon replacements: Technology and science.
  • Vipond, A., C. Canosa-Mas, M. Flugge, D. Gray, D. Shallcross, D. Shah, and R. Wayne. 2002. A discharge-flow study of the self-reaction of IO. Physical Chemistry Chemical Physics 4 (15):3648. doi:10.1039/b203062d.
  • Westbrook, C. K. 1982. Inhibition of hydrocarbon oxidation in laminar flames and detonations by halogenated compounds. Proceedings of the Combustion Institute 19 (1):127. doi:10.1016/S0082-0784(82)80185-9.
  • Xerri, B., S. Canneaux, F. Louis, J. Trincal, F. Cousin, M. Badawi, and L. Cantrel. 2012. Ab initio calculations and iodine kinetic modeling in the reactor coolant system of a pressurized water reactor in case of severe nuclear accident. Comput Theor Chem 990:194. doi:10.1016/j.comptc.2012.02.024.
  • Yang, J. H., and D. Conway. 1965. Pyrolysis of ethyl iodide by the toluene‐carrier flow technique. J. Chem. Phys. 43 (4):1296. doi:10.1063/1.1696918.
  • Yang, X., C. F. Goldsmith, and R. S. Tranter. 2009. Decomposition and vibrational relaxation in CH3I and self-reaction of CH3 radicals. J Phys Chem A 113 (29):8307. doi:10.1021/jp903336u.
  • Yuan, J., L. Wells, and P. Marshall. 1997. Kinetic studies of the reactions of atomic hydrogen with iodoalkanes. J Phys Chem A 101 (19):3542. doi:10.1021/jp964096o.
  • Yuan, J., L. Wells, and P. Marshall. 1998. Kinetic studies of the reaction of atomic hydrogen with trifluoroiodomethane. Chem Phys Lett 297 (5–6):553. doi:10.1016/S0009-2614(98)01170-1.
  • Zaslonko, I., Y. K. Mukoseev, G. Skorobogatov, and V. Khripun. 1990. Measurement of the rate constant for the thermal dissociation of gaseous CF3I in a shock tube. Kinetics and Catalysis 31:912.
  • Zhang, S., R. S. Strekowski, A. Monod, L. Bosland, and C. Zetzsch. 2012. Temperature-dependent kinetics study of the reactions of OH with C2H5I, n-C3H7I, and iso-C3H7I. J Phys Chem A 116 (38):9497. doi:10.1021/jp300575f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.