256
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Combustion Inhibition Ability of Piperazine Phosphoramide Derivatives and Titanium Carbide on Epoxy Resin

, , , , , , , & show all
Pages 2952-2971 | Received 20 Jan 2022, Accepted 28 Feb 2022, Published online: 08 Mar 2022

References

  • Battig, A., P. Müller, A. Bertin, and B. Schartel. 2021. Hyperbranched rigid aromatic phosphorus‐containing flame retardants for epoxy resins. Macromol Mater Eng 306:2000731. doi:10.1002/mame.202000731.
  • Capricho, J. C., B. Fox, and N. Hameed. 2019. Multifunctionality in epoxy resins. Polymer Reviews 60:1–41. doi:10.1080/15583724.2019.1650063.
  • Dhaundiyal, A., S. B. Singh, M. M. Hanon, and R. Rawat. 2018. Determination of kinetic parameters for the thermal decomposition of parthenium hysterophorus. Environmental and Climate Technologies 22:5–21. doi:10.1515/rtuect-2018-0001.
  • Dubdub, I., and M. Al-yaari. 2020. Pyrolysis of mixed plastic waste: I. kinetic study. Materials (Basel) 13:4912. doi:10.3390/ma13214912.
  • GAO, W., K. Chen, Z. Xiang, F. Yang, J. Zeng, J. LI, R. Yang, G. Rao, and H. Tao. 2013. Kinetic study on pyrolysis of tobacco residues from the cigarette industry. Ind Crops Prod 44:152–57. doi:10.1016/j.indcrop.2012.10.032.
  • Ghassemi, H., W. Harlow, O. Mashtalir, M. Beidaghi, M. R. Lukatskaya, Y. Gogotsi, and M. L. Taheri. 2014. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3 C2 and formation of carbon-supported TiO2. Journal of Materials Chemistry A 2:14339. doi:10.1039/C4TA02583K.
  • Gong, K. L., K. Q. Zhou, X. D. Qian, C. L. SHI, and B. YU. 2021. MXene as emerging nanofillers for high-performance polymer composites: A review. Composites Part B-Engineering 217:108867. doi:10.1016/j.compositesb.2021.108867.
  • HE, L., J. Wang, B. Wang, X. Wang, X. Zhou, W. Cai, X. MU, Y. HOU, Y. HU, and L. Song. 2019. Large-scale production of simultaneously exfoliated and functionalized Mxenes as promising flame retardant for polyurethane. Composites Part B: Engineering 179:107486. doi:10.1016/j.compositesb.2019.107486.
  • HU, X., M. LI, J. Yang, F. LIU, H. Huang, H. PAN, and H. Yang. 2021. In situ fabrication of melamine hydroxy ethylidene diphosphonate wrapped montmorillonite for reducing the fire hazards of epoxy resin. Appl Clay Sci 201:105934. doi:10.1016/j.clay.2020.105934.
  • Huang, S., L. Wang, Y. LI, C. Liang, and J. Zhang. 2021. Novel Ti3 C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 138:50649. doi:10.1002/app.50649.
  • HUO, S., P. Song, B. YU, S. RAN, V. S. Chevali, L. LIU, Z. Fang, and H. Wang. 2021. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog Polym Sci 114: 101366. doi:10.1016/j.progpolymsci.2021.101366.
  • JIN, F.-L., X. LI, and S.-J. Park. 2015. Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry 29:1–11. doi:10.1016/j.jiec.2015.03.026.
  • LI, H., N. Wang, X. HAN, H. Yuan, and J. Xie. 2021. Mechanism identification and kinetics analysis of thermal degradation for carbon fiber/epoxy resin. Polymers (Basel) 14:13. doi:10.3390/polym14010013.
  • LIU, Q., D. Wang, Z. LI, Z. LI, X. Peng, C. LIU, Y. Zhang, and P. Zheng. 2020b. Recent developments in the flame-retardant system of epoxy resin. Materials (Basel) 13:2145. doi:10.3390/ma13092145.
  • LIU, L., Y. XU, Y. DI, M. XU, Y. PAN, and B. LI. 2020a. Simultaneously enhancing the fire retardancy and crystallization rate of biodegradable polylactic acid with piperazine-1,4-diylbis(diphenylphosphine oxide). Composites Part B: Engineering 202:108407. doi:10.1016/j.compositesb.2020.108407.
  • LUO, Q., Y. SUN, B. YU, C. LI, J. Song, D. TAN, and J. Zhao. 2019. Synthesis of a novel reactive type flame retardant composed of phenophosphazine ring and maleimide for epoxy resin. Polym. Degrad. Stab. 165:137–44. doi:10.1016/j.polymdegradstab.2019.05.008.
  • Morgan, A. B. 2018. The future of flame retardant polymers – unmet needs and likely new approaches. Polymer Reviews 59:25–54. doi:10.1080/15583724.2018.1454948.
  • Movahedifar, E., H. Vahabi, M. R. Saeb, and S. Thomas. 2019. Flame retardant epoxy composites on the Road of innovation: An analysis with flame retardancy index for future development. Molecules 24:3964. doi:10.3390/molecules24213964.
  • Naguib, M., V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi. 2014. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. Weinheim 26:992–1005. doi:10.1002/adma.201304138.
  • Nithiyapathi, C., K. Thirunavukkarasu, A. Daniel Das, and D. Tamilvendan 2021. Progression in Fire retardant properties of polymer composites – a review. 2nd International Conference on Materials, Manufacturing and Machining for Industry 4.0 (ICMMM-2020), vol 1059, (IOP Conference Series: Materials Science and Engineering), 012058. doi:10.1088/1757-899X/1059/1/012058.
  • REN, X., B. ZOU, Y. Zhou, Z. Zhao, S. QIU, and L. Song. 2021. Construction of few-layered black phosphorus/graphite-like carbon nitride binary hybrid nanostructure for reducing the fire hazards of epoxy resin. J. Colloid Interface Sci. 586:692–707. doi:10.1016/j.jcis.2020.10.139.
  • Singh, N. P., V. K. Gupta, and A. P. Singh. 2019. Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymer 180:121724. doi:10.1016/j.polymer.2019.121724.
  • Szeluga, U., S. Pusz, B. Kumanek, K. Olszowska, A. Kobyliukh, and B. Trzebicka. 2020. Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites - a review. Crit. Rev. Solid State Mater. Sci. 46:152–87. doi:10.1080/10408436.2019.1708702.
  • Vahabi, H., B. K. Kandola, and M. R. Saeb. 2019. Flame retardancy index for thermoplastic composites. Polymers (Basel) 11:407. doi:10.3390/polym11030407.
  • Wang, P., H. Xiao, C. Duan, B. Wen, and Z. LI. 2020. Sulfathiazole derivative with phosphaphenanthrene group: Synthesis, characterization and its high flame-retardant activity on epoxy resin. Polym. Degrad. Stab. 173:109078. doi:10.1016/j.polymdegradstab.2020.109078.
  • Xiao, Y., C. MA, Z. JIN, C. Wang, J. Wang, H. Wang, X. MU, L. Song, and Y. HU. 2021. Functional covalent organic framework illuminate rapid and efficient capture of Cu (II) and reutilization to reduce fire hazards of epoxy resin. Sep. Purif. Technol. 259:118119. doi:10.1016/j.seppur.2020.118119.
  • XU, X., S. Wang, S. MA, W. Yuan, Q. LI, J. Feng, and J. ZHU. 2019. Vanillin-derived phosphorus-containing compounds and ammonium polyphosphate as green fire-resistant systems for epoxy resins with balanced properties. Polym Adv Technol 30:264–78. doi:10.1002/pat.4461.
  • YU, B., B. Tawiah, L. Q. Wang, A. C. Yin Yuen, Z. C. Zhang, L. L. Shen, B. LIN, B. FEI, W. Yang, A. LI, et al. 2019. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 374:110–19. doi:10.1016/j.jhazmat.2019.04.026.
  • Yuan, Y., Y. T. PAN, W. Zhang, M. Feng, N. Wang, D. Y. Wang, and R. Yang. 2021. Delamination and engineered interlayers of Ti3C2 MXenes using phosphorous vapor toward flame-retardant epoxy nanocomposites. ACS Appl. Mater. Interfaces 13:48196–207. doi:10.1021/acsami.1c11863.
  • Zhang, X., and R. Huang. 2020. Thermal decomposition kinetics of basalt fiber-reinforced wood polymer composites. Polymers (Basel) 12:2283. doi:10.3390/polym12102283.
  • Zhang, J., Q. Kong, and D.-Y. Wang. 2018. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. Journal of Materials Chemistry A 6:6376–86. doi:10.1039/C7TA10961J.
  • Zhang, Z., J. Qin, W. Zhang, Y.-T. PAN, D.-Y. Wang, and R. Yang. 2020. Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chemical Engineering Journal 381:122777. doi:10.1016/j.cej.2019.122777.
  • Zhang, Y., J. YU, J. LU, C. ZHU, and D. QI. 2021. Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. J Alloys Compd 870:159442. doi:10.1016/j.jallcom.2021.159442.
  • Zhou, Y., Y. LIN, B. Tawiah, J. SUN, R. K. K. Yuen, and B. FEI. 2021. DOPO-Decorated two-dimensional MXene nanosheets for flame-retardant, ultraviolet-protective, and reinforced polylactide composites. ACS Appl. Mater. Interfaces 13:21876–87. doi:10.1021/acsami.1c05587.
  • ZOU, B., S. QIU, X. REN, Y. Zhou, F. Zhou, Z. XU, Z. Zhao, L. Song, Y. HU, and X. Gong. 2020. Combination of black phosphorus nanosheets and MCNTs via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites. J. Hazard. Mater. 383:121069. doi:10.1016/j.jhazmat.2019.121069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.