156
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Numerical Study on the Effects of Pilot Diesel Quantity Coupling EGR in a High Pressure Direct Injected Natural Gas Engine

, ORCID Icon, , &
Pages 1-18 | Received 30 Jan 2022, Accepted 27 Mar 2022, Published online: 10 Apr 2022

References

  • Beale, J. C., and R. D. Reitz. 1999. Moodeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model. Atomization Sprays 9: 623–50. doi:10.1615/AtomizSpr.v9.i6.40.
  • Blaly, M., M. Wendeker, P. Magryta, Z. Czyz, and R. Sochaczewski. 2014. “CFD model of the mixture formation process of the CNG direct injection engine: SAE Technical Paper Series.“ doi:10.4271/2014-01-2575.
  • Dong, Q., Y. Li, E. Song, C. Yao, L. Fan, and J. Sun. 2017. The characteristic analysis of high-pressure gas jets for natural gas engine based on shock wave structure. Energy Convers. Manage. 149: 26–38. doi:10.1016/j.enconman.2017.06.015.
  • Faghani, E. 2015. Effect of injection strategies on particulate matter emissions from HPDI natural-gas engine. Vancouver, Canada: University of British Columbia.
  • Faghani, E., P. Kheirkhah, C. W. J. Mabson, G. Mctaggart-cowan, P. Kirchen, and S. Rogak. 2017a. “Effect of injection strategies on emissions from a pilot-ignited direct-injection natural-gas engine- part I: Late post injection: SAE Technical Paper Series.“ doi:10.4271/2017-01-0774.
  • Faghani, E., P. Kheirkhah, C. W. J. Mabson, G. Mctaggart-cowan, P. Kirchen, and S. Rogak. 2017b. “Effect of injection strategies on emissions from a pilot-ignited direct-injection natural-gas engine- Part II: Slightly premixed combustion: SAE Technical Paper Series.“ doi:10.4271/2017-01-0763.
  • Faghani, E., B. Patychuk, G. Mctaggart-cowan, and S. Rogak. 2013. “Soot emission reduction from post injection strategies in a high pressure direct-injection natural gas engine: SAE Technical Paper Series.“ doi:10.4271/2013-24-0114.
  • Florea, R., G. D. Neely, Z. Abidin, and J. Miwa. 2016. “Efficiency and emissions characteristics of partially premixed dual-fuel combustion by co-direct injection of NG and diesel fuel (DI2): SAE Technical Paper Series.“ doi:10.4271/2016-01-0779.
  • Gao, Y., X. X. Li, J. Li, L. Zhang, and S. H. Li. 2014. Numerical simulations of natural gas injection pressure effects on a direct injected, pilot ignited, natural gas engine. Appl. Mech. Mater. 510: 179–84. 10.4028/www.scientific.net/AMM.510.179.
  • Gibson, C. M., A. C. Polk, N. T. Shoemaker, K. K. Srinivasan, and S. R. Krishnan. 2011. Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine. J. Eng. Gas Turbines Power 133. doi:10.1115/1.4002895.
  • Gogolev, I. M., and J. S. Wallace. 2018. Performance and emissions of a compression-ignition direct-injected natural gas engine with shielded glow plug ignition assist. Energy Convers. Manage. 164: 70–82. doi:10.1016/j.enconman.2018.02.071.
  • Grimaldi, C. N., and F. Millo. 2015. Internal Combustion Engine (ICE) Fundamentals. In Handbook of Clean Energy Systems edited by Yan, J. Y. New York, America: Wiley. 4032. doi:10.1002/9781118991978.hces077.
  • Han, Z., and R. D. Reitz. 1995. Turbulence modeling of internal combustion engines using RNG κ-ε models. Combust. Sci. Technol. 106: 267–95. doi:10.1080/00102209508907782.
  • Han, Z., and R. D. Reitz. 1997. A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling. Heat Mass Transfer 40 (3): 613–25. doi:10.1016/0017-9310(96)00117-2.
  • Han, Z., Z. Xu, N. Trigui. 2005. Spray/wall interaction models for multidimensional engine simulation. Int. J. Engine Res. l (1): 127–46. doi:10.1243/1468087001545308.
  • Jones, H. L., S. N. Rogak, W. K. Bushe, and P. G. Hill 2007. The effects of high-pressure injection on a compression–ignition, direct injection of natural gas engine. Journal of Engineering for Gas Turbines and Power. 129: 579–88. doi:10.1115/1.2432894.
  • Kheirkhah, P. 2015. CFD modeling of injection strategies in a High-Pressure Direct-Injection (HPDI) natural gas engine. Master, Vancouver, Canada: University of British Columbia.
  • Le Moien, J., P. Senecal, S. A. Kaiser, V. M. Salazar, J. W. Anders, K. Svensson, and C. Gehrke. 2015. A computational study of the mixture preparation in a direct–injection hydrogen engine. J. Eng. Gas Turbines Power. 137 (11): 1–9 . doi:10.1115/1.4030397.
  • Li, J. Z., L. F. Deng, J. J. Guo, M. Zhang, Z. Z. Zi, J. Zhang, and B. Y. Wu. 2020a. Effect of injection strategies in Diesel/NG direct-injection engines on the combustion process and emissions under low-load operating conditions. Energies 13 (4): 990. doi:10.3390/en13040990.
  • Li, M. H., G. F. Liu, X. R. Liu, Z. J. Li, Q. Zhang, and B. X. Shen. 2019b. Performance of a direct-injection natural gas engine with multiple injection strategies. Energy 189. doi: 10.1016/j.energy.2019.116363.
  • Li, J., X. Liu, H. Liu, Y. Ye, H. Wang, J. Dong, B. Liu, and M. Yao. 2020b. Kinetic study of the ignition process of methane/n-heptane fuel blends under high-pressure direct-injection natural gas engine conditions. Energy Fuels 34: 14796–813. doi:10.1021/acs.energyfuels.0c02667.
  • Li, J., H. Liu, X. Liu, Y. Ye, H. Wang, X. Wang, H. Zhao, and M. Yao. 2021b. Development of a simplified n-heptane/methane model for high-pressure direct-injection natural gas marine engines. Front. Energy 15: 405–20. doi:10.1007/s11708-021-0718-3.
  • Li, J., H. Liu, X. Liu, Y. Ye, H. Wang, and M. Yao. 2021a. Investigation of the combustion kinetics process in a high-pressure direct injection natural gas marine engine. Energy Fuels 35: 6785–97. doi:10.1021/acs.energyfuels.1c00353.
  • Li, J. R., J. T. Wang, T. Liu, J. J. Dong, B. Liu, C. H. Wu, Y. Ye, H. Wang, and H. F. Liu. 2019a. An investigation of the influence of gas injection rate shape on high-pressure direct-injection natural gas marine engines. Energies 12 (13): 2571. doi:10.3390/en12132571.
  • Li, M. H., H. M. Wu, T. C. Zhang, B. X. Shen, Q. Zhang, and Z. G. Li. 2020c. “A comprehensive review of pilot ignited high pressure direct injection natural gas engines: Factors affecting combustion, emissions and performance.“ Renewable Sustainable Energy Rev. 119: 109653. doi:10.1016/j.rser.2019.109653.
  • Li, M. H., Q. Zhang, G. X. LI, and P. X. Li. 2017. “Effects of hydrogen addition on the performance of a pilot-ignition direct-injection natural gas engine: A numerical study.“ Energy Fuels 31: 4407–23. doi:10.1021/acs.energyfuels.6b02935.
  • Li, M. H., Q. Zhang, G. Q. Li, and S. D. Shao. 2015. Experimental investigation on performance and heat release analysis of a pilot ignited direct injection natural gas engine. Energy 90: 1251–60. doi:10.1016/j.energy.2015.06.089.
  • Li, M. H., Q. Zhang, X. R. Liu, Y. X. Ma, and Q. P. Zheng. 2018. Soot emission prediction in pilot ignited direct injection natural gas engine based on n-heptane/toluene/methane/PAH mechanism. Energy 163: 660–81. doi:10.1016/j.energy.2018.08.102.
  • Li, X. C., Z. H. Zhang, L. T. Mao, Y. X. Long, C. T. Zhu, and G. S. Li. 2021. Spray and ignition characteristics of a high-pressure direct-injection natural gas engine. Trans. CSICE 39: 34–43. doi:10.16236/j.cnki.nrjxb.202101005.
  • Li, M. H., X. L. Zheng, Q. Zhang, Z. G. Li, B. X. Shen, and X. R. Liu. 2019c. The effects of partially premixed combustion mode on the performance and emissions of a direct injection natural gas engine. Fuel 250: 218–34. doi:10.1016/j.fuel.2019.04.009.
  • Liu, Y. D., M. Jia, M. Z. Xie, and B. Pang. 2013. Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation. Energy Fuels 27: 4899–909. doi:10.1021/ef4009955.
  • Liu, J., B. Ma, R. G. Yu, and Q. Guo. 2020. Optimization of the direct injection natural gas engine under different combustion modes. Fuel 272. doi: 10.1016/j.fuel.2020.117699.
  • Liu, J., H. B. Zhao, J. L. Wang, and N. Zhang. 2019. Optimization of the injection parameters of a diesel/natural gas dual fuel engine with multi-objective evolutionary algorithms. Appl. Therm. Eng. 150: 70–79. doi:10.1016/j.applthermaleng.2018.12.171.
  • Lu, X. W., and P. Geng. 2020. Numerical simulation of performance and emission of marine diesel engine under different gravity conditions. Adv. Mech. Eng. 12 (7): 1–12. doi:10.1177/1687814020927509.
  • Mabson, C. W. J. 2015. Emissions characterization of paired gaseous jets in a pilot-ignited natural-gas compression-ignition engine. Master, Vancouver, Canada: University of British Columbia.
  • Mctaggart-cowan, G. P., H. L. Jones, and S. N. Rogak. 2005. The effects of high-pressure injection on a compression-ignition, direct injection of natural gas engine. In ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Ottawa, Canada.
  • Mctaggart-cowan, G., K. Mann, J. Huang, A. Sing, B. Patychuk, Z. X. Zheng, and S. Munshi. 2015. Direct injection of natural gas at up to 600 bar in a pilot-ignited heavy-duty engine. SAE Int. J. Engines 8: 981–96. doi:10.4271/2015-01-0865.
  • Mctaggart-cowan, G. P., K. Mann, J. Huang, N. Wu, S. R. Munshi. 2012. Particulate matter reduction from a pilot-ignited, direct injection of natural gas engine. In Internal Combustion Engine Division Fall Technical Conference, Vancouver, BC, Canada. ICEF2012–92162.
  • Mctaggart-cowan, G. P., S. N. Rogak, S. R. Munshi, P. G. Hill, and W. K. Bushe. 2010. The influence of fuel composition on a heavy-duty, natural-gas direct-injection engine. Fuel 89: 752–59. doi:10.1016/j.fuel.2009.10.007.
  • Mctaggart-cowan, G. P., N. Wu, B. Jin, S. N. Rogak, M. H. Davy, and W. K. Bushe. 2009. Effects of fuel composition on high-pressure non-premixed natural gas combustion. Combust. Sci. Technol. 181: 397–416. doi:10.1080/00102200802612260.
  • Mousavi, S. M., R. K. Saray, K. Bahlouli, K. Poorghasemi, A. Maghbouli, and A. Sadeghlu. 2019. Effects of pilot diesel injection strategies on combustion and emission characteristics of dual-fuel engines at part load conditions. Fuel 258: 116153. doi:10.1016/j.fuel.2019.116153.
  • Munshi, S. R., G. P. Mctaggart-cowan, J. Hung, and P. G. Hill. 2011. Development of a partially-premixed combustion strategy for a low-emission, direct injection high efficiency natural gas engine. In Internal Combustion Engine Division Fall Technical Conference, Morgantown, West Virginia, USA. ICEF2011–60181. doi:10.1115/ICEF2011-60181.
  • O’Rourke, P. J., and A. A. Amsden. 1987. Three dimensional numerical simulations of the UPS-292 stratified charge engine. In Conference: Society of Automotive Engineers international congress and expo, Detroit, MI, USA, February 23; Other Information: 870597. United States: Society of Automotive Engineers, Warrendale, PA.
  • Papagiannakis, R. G., C. D. Rakopoulos, D. T. Hountalas, and D. C. Rakopoulos. 2010. Emission characteristics of high speed, dual fuel, compression ignition engine operating in a wide range of natural gas/diesel fuel proportions. Fuel 89: 1397–406. doi:10.1016/j.fuel.2009.11.001.
  • Patychuk, B., N. Wu, G. Mctaggart-cowan, P. Hill, and S. Munshi. 2015. Intake and exhaust valve timing control on a heavy-duty, direct-injection natural gas engine: SAE Technical Paper Series. doi:10.4271/2015-01-0864.
  • Reitz, R. D., and F. V. Bracco. 1986. Mechanism of atomization of a liquid jets. In The Physics of Fluids. 25 (10): 1730–42. doi:10.1063/1.863650.
  • Schwerdt, C. 2006. Modelling NOx-formation in combustion processes. MSc Theses.
  • Senecal, P. K., E. Pomraning, and K. J. Richards 2003. Multi-dimensional modeling of direct-injection diesel spray liquid length and flam lift-off length using CFD an parallel detailed chemistry. SAE technical paper series, 2003-01-1043.
  • Strödecke, D. 2016. Two-stroke dual-fuel technology evaluation. MTZ ind. 6: 38–45. doi:10.1007/s40353-016-0005-7.
  • Thangaraja, J., and C. Kannan. 2016. Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review. Appl. Energy 180: 169–84. doi:10.1016/j.apenergy.2016.07.096.
  • Wang, Q., C. S. Shao, Q. Liu, Z. R. Zhang, and Z. X. He. 2017. Effects of injection rate on combustion and emissions of a pilot ignited direct injection natural gas engine. J. Mech. Sci. Technol. 31: 1969–78. doi:10.1007/s12206-017-0346-3.
  • Wei, L. J., and P. Geng. 2016. A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Process. Technol 142: 264–78. doi:10.1016/j.fuproc.2015.09.018.
  • Yousefi, A., H. S. Guo, M. Birouk, and B. Liko. 2019. “On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection.“ Appl. Energy 242: 216–31. doi:10.1016/j.apenergy.2019.03.093.
  • Zhang, Q., M. H. Li, G. X. Li, and S. D. Shao. 2015a. Effects of injection parameters on the combustion and emission characteristics of diesel-piloted direct-injection natural gas engine during idle conditions. J. Energy Eng. 141. doi: 10.1061/(ASCE)EY.1943-7897.0000239.
  • Zhang, Q., M. H. LI, and S. D. Shao. 2015b. Combustion process and emissions of a heavy-duty engine fueled with directly injected natural gas and pilot diesel. Appl. Energy 157: 217–28. doi:10.1016/j.apenergy.2015.08.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.