137
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Kinetic Analysis of the Generation of Active Sites During the Low-Temperature Pyrolysis of Coal

, , , &
Pages 352-370 | Received 24 Mar 2022, Accepted 16 May 2022, Published online: 25 May 2022

References

  • Avila, C., T. Wu, and E. Lester. 2014. Petrographic characterization of coals as a tool to detect spontaneous combustion potential. Fuel 125:173–82. doi:10.1016/j.fuel.2014.01.042.
  • Bai, Z., C. Wang, J. Deng, F. Kang, and C. M. Shu. 2020. Experimental investigation on using ionic liquid to control spontaneous combustion of lignite. Process Saf. Environ 142:138–49. doi:10.1016/j.psep.2020.06.017.
  • Cai, J., S. Yang, X. Hu, W. Song, Q. Xu, B. Zhou, and Y. Song. 2019. Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation. Fuel 253:339–48. doi:10.1016/j.fuel.2019.05.040.
  • Clemens, A. H., T. W. Matheson, and D. E. Rogers. 1991. Low temperature oxidation studies of dried New Zealand coals. Fuel 70 (2):215–21. doi:10.1016/0016-2361(91)90155-4.
  • Cui, C., H. Deng, C. Deng, X. Wang, Y. Shan, and Z. Song. 2022. Study on the effect of low molecular hydrocarbon compounds on coal spontaneous combustion. Fuel 318:123193. doi:10.1016/j.fuel.2022.123193.
  • Deng, J., Q. Li, Y. Xiao, and H. Wen. 2017. The effect of oxygen concentration on the non-isothermal combustion of coal. Thermochim Acta 653:106–15. doi:10.1016/j.tca.2017.04.009.
  • Deng, J., Y. Xiao, Q. Li, J. Lui, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157:261–69. doi:10.1016/j.fuel.2015.04.063.
  • Du, X., S. Peng, H. Wang, S. Bernardes, G. Yang, and Z. Li. 2014. Annual change detection by ASTER TIR data and an estimation of the annual coal loss and CO2 emission from coal seams spontaneous combustion. Remote Sens-Basel 7 (1):319–41. doi:10.3390/rs70100319.
  • Guo, Y., and F. Cheng. 2019. Adaptability analysis of kinetic model of blended coal pyrolysis. J. Combust Sci. Techno 25 (6):509–18. doi:10.11715/rskxjs.R201812026.
  • Kidena, K., M. Murakami, S. Murata, and M. Nomura. 2003. Low-temperature oxidation of coal suggestion of evaluation method of active methylene site. Energ. Fuel 17 (4):1043–47. doi:10.1021/ef020293c.
  • Li, J., Z. Li, Y. Yang, Y. Duan, J. Xu, and R. Gao. 2019a. Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures. Energy 185:28–38. doi:10.1016/j.energy.2019.07.041.
  • Li, J., Z. Li, Y. Yang, and C. Wang. 2018. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal. Fuel 233:237–46. doi:10.1016/j.fuel.2018.06.039.
  • Li, J., Z. Li, Y. Yang, and X. Zhang. 2019b. Study on the generation of active sites during low-temperature pyrolysis of coal and its influence on coal spontaneous combustion. Fuel 241:283–96. doi:10.1016/j.fuel.2018.12.034.
  • Li, J., Z. Li, Y. Yang, X. Zhang, D. Yan, and L. Liu. 2017a. Inhibitive effects of antioxidants on coal spontaneous combustion. Energ. Fuel 31 (12):14180–90. doi:10.1021/acs.energyfuels.7b02339.
  • Li, Z., Y. Liu, J. Jia, B. Wu, and H. Li. 2017. Precision improvement of coal oxidation experiment and experimental method of closed oxygen consumption. J. China Univ. Min. Technol 46 (2):273–78. doi:10.13247/j.cnki.jcumt.000643.
  • Liang, Y., J. Zhang, T. Ren, Z. Wang, and S. Song. 2018. Application of ventilation simulation to spontaneous combustion control in underground coal mine: A case study from Bulianta colliery. Int. J. Min. Sci. Techno 28 (2):231–42. doi:10.3969/j.2095-2686.2018.02.009.
  • Lu, W., J. Li, J. Li, Q. He, W. Hao, and Z. Li. 2021. Oxidative kinetic characteristics of dried soaked coal and its related spontaneous combustion mechanism. Fuel 305:121626. doi:10.1016/j.fuel.2021.121626.
  • Ma, L., R. Guo, Y. Gao, L. Ren, G. Wei, and C. Li. 2019. Study on coal spontaneous combustion characteristics under methane-containing atmosphere. Combust. Sci. Technol 191 (8):1456–72. doi:10.1080/00102202.2018.1531286.
  • Qi, X., D. Wang, H. Xin, and G. Qi. 2014. An in situ testing method for analyzing the changes of active groups in coal oxidation at low temperatures. Spectrosc Lett 47 (7):495–503. doi:10.1080/00387010.2013.817433.
  • Qi, X., H. Xue, H. Xin, and C. Wei. 2016. Reaction pathways of hydroxyl groups during coal spontaneous combustion. Can J Chem 94 (5):494–500. doi:10.1139/cjc-2015-0605.
  • Qin, B., G. Dou, Y. Wang, H. Xin, L. Ma, and D. Wang. 2017. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 190:129–35. doi:10.1016/j.fuel.2016.11.045.
  • Sahu, H. B., S. S. Mahapatra, and D. C. Panigrahi. 2009. An empirical approach for classification of coal seams with respect to the spontaneous heating susceptibility of Indian coals. Int. J. Coal Geol 80 (3–4):175–80. doi:10.1016/j.coal.2009.10.001.
  • Tang, Y. 2016. Inhibition of low-temperature oxidation of bituminous coal using a novel phase-transition aerosol. Energ. Fuel 30 (11):9303–09. doi:10.1021/acs.energyfuels.6b02040.
  • Wang, D., G. Dou, X. Zhong, H. Xin, and B. Qin. 2014. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel 117:218–23. doi:10.1016/j.fuel.2013.09.070.
  • Wang, D., H. Xin, X. Qi, G. Dou, G. Qi, and L. Ma. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, H., B. Dlugogorski, and E. Kennedy. 2002. Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures. Fuel 81:1912–23. doi:10.1016/S0016-2361(02)00122-9.
  • Wang, K., X. Zhai, W. Wang, and H. Wen. 2018. Effect of oxygen concentration and blowing rate on thermal properties of coal. J Xi’An Univ. Sci. Tech 38 (1):31–36. doi:10.13800/j.cnki.xakjdxxb.2018.0105.
  • Xi, Z., D. Li, and Z. Feng. 2017. Characteristics of polymorphic foam for inhibiting spontaneous coal combustion. Fuel 206:334–41. doi:10.1016/j.fuel.2017.06.022.
  • Xie, J., S. Xue, W. Cheng, and G. Wang. 2011. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system. Int. J. Coal Geol 85 (1):123–27. doi:10.1016/j.coal.2010.10.007.
  • Xin, H., D. Wang, X. Qi, X. Zhong, L. Ma, G. Dou, and H. Wang. 2018. Oxygen consumption and chemisorption in low-temperature oxidation of sub-bituminous pulverized coal. Spectrosc Lett 51 (2):104–11. doi:10.1080/00387010.2018.1430701.
  • Xu, Q., S. Yang, J. Cai, B. Zhou, and Y. Xin. 2018. Risk forecasting for spontaneous combustion of coals at different ranks due to free radicals and functional groups reaction. Process Saf. Environ 118:195–202. doi:10.1016/j.psep.2018.06.040.
  • Xu, T., Q. Xie, and Y. Kang. 2017. Heat effect of the oxygen-containing functional groups in coal during spontaneous combustion processes. Adv. Powder Technol 28 (8):1841–48. doi:10.1016/j.apt.2017.01.015.
  • Yang, S., X. Hu, W. V. Liu, J. Cai, and X. Zhou. 2018. Spontaneous combustion influenced by surface methane drainage and its prediction by rescaled range analysis. Int. J. Min. Sci. Techno 28 (2):215–21. doi:10.3969/j.2095-2686.2018.02.007.
  • Zhang, J., T. Ren, Y. Liang, and Z. Wang. 2016a. A review on numerical solutions to self-heating of coal stockpile: Mechanism, theoretical basis, and variable study. Fuel 182:80–109. doi:10.1016/j.fuel.2016.05.087.
  • Zhang, W., S. Jiang, K. Wang, L. Wang, Y. Xu, Z. Wu, H. Shao, Y. Wang, and M. Miao. 2015. Thermogravimetric dynamics and FTIR analysis on oxidation properties of low-rank coal at low and moderate temperatures. Int. J. Coal Prep. Util 35 (1):39–50. doi:10.1080/19392699.2013.873421.
  • Zhang, Y., J. Wang, S. Xue, J. Wu, L. Chang, and Z. Li. 2016b. Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in-situ FTIR. Int. J. Coal Geol 154-155:155–64. doi:10.1016/j.coal.2016.01.002.
  • Zhang, Y., B. Wu, S. H. Liu, B. Lei, J. Zhao, and Y. Zhao. 2020. Thermal kinetics of nitrogen inhibiting spontaneous combustion of secondary oxidation coal and extinguishing effects. Fuel 278:118223. doi:10.1016/j.fuel.2020.118223.
  • Zhu, H., M. Chang, and H. Wang. 2017. Study on primal CO gas generation and emission of coal seam. Int. J. Min. Sci. Techno 27 (6):973–79. doi:10.3969/j.2095-2686.2017.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.