2,838
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Improvement of heat- and mass transfer modeling for single iron particles combustion using resolved simulations

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 572-588 | Received 11 May 2022, Accepted 09 Jun 2022, Published online: 20 Jun 2022

References

  • Akiyama, T., H. Ohta, R. Takahashi, Y. Waseda, and J. Yagi. 1992. Measurement and modeling of thermal conductivity for dense iron oxide and porous iron ore agglomerates in stepwise reduction. ISIJ Int 32 (7):829–37. doi:10.2355/isijinternational.32.829.
  • Bergthorson, J. M., S. Goroshin, M. J. Soo, P. Julien, J. Palecka, D. L. Frost, and D. J. Jarvis. 2015. Direct combustion of recyclable metal fuels for zero-carbon heat and power. Appl. Energy 160:368–82. doi:10.1016/j.apenergy.2015.09.037.
  • Bird, R. B., E. N. Lightfoot, and W. E. Stewart. 2002. Transport phenomena. New York: J. Wiley.
  • Both, A., D. Mira, and O. Lehmkuhl. 2022. Evaporation of volatile droplets subjected to flame-like conditions. Int. J. Heat Mass Transf 187:122521. doi:10.1016/j.ijheatmasstransfer.2022.122521.
  • COMSOL. 2019. COMSOL multiphysics ® v. 5.5. Stockholm, Sweden: COMSOL AB. Reference Manual.
  • Dreizin, E., A. Suslov, and M. Trunov. 1993. General trends in metal particles heterogeneous combustion. Combust Sci Technol 90 (1–4):79–99. doi:10.1080/00102209308907604.
  • Ellendt, N., A. Lumanglas, S. I. Moqadam, and L. Mädler. 2018. A model for the drag and heat transfer of spheres in the laminar regime at high temperature differences. Int J Therm Sci 133:98–105. doi:10.1016/j.ijthermalsci.2018.07.009.
  • Fiszdon, J. K. 1979. Melting of powder grains in a plasma flame. Int J Heat Mass Transf 22 (5):749–61. doi:10.1016/0017-9310(79)90122-4.
  • Goos, E., A. Burcat, and B. Ruscic. 2005 Extended third millennium ideal gas andcondensed phase thermochemical database for combustion with updates from activethermochemical tables. German Aerospace Center. doi:10.2172/925269
  • Hazenberg, T., and J. A. van Oijen. 2021. Structures and burning velocities of flames in iron aerosols. Proc Combust Inst 38 (3):4383–90. doi:10.1016/j.proci.2020.07.058.
  • Hixson, R. S., M. A. Winkler, and M. L. Hodgdon. 1990. Sound speed and thermophysical properties of liquid iron and nickel. Phys. Rev. B 42 (10):6485–91. doi:10.1103/PhysRevB.42.6485.
  • Ho, C. Y., R. W. Powell, and P. E. Liley. 1972. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1 (2):279–421. doi:10.1063/1.3253100.
  • Hubbard, G., V. Denny, and A. Mills. 1975. Droplet evaporation: Effects of transients and variable properties. Int J Heat Mass Transf 18 (9):1003–08. doi:10.1016/0017-9310(75)90217-3.
  • Jayawickrama, T. R., N. E. L. Haugen, M. U. Babler, M. Chishty, and K. Umeki. 2021. The effect of Stefan flow on nusselt number and drag coefficient of spherical particles in non-isothermal gas flow. Int. J. Multiph. Flow 140:103650. doi:10.1016/j.ijmultiphaseflow.2021.103650.
  • Konnov, A. A. 2019. Yet another kinetic mechanism for hydrogen combustion. Combust. Flame 203:14–22. doi:10.1016/j.combustflame.2019.01.032.
  • Lee, Y. E., and D. R. Gaskell. 1974. The densities and structures of melts in the system Cao-“FeO”-SiO2. Metall. Mater. Trans. B 5 (4):853–60. doi:10.1007/BF02643138.
  • Li, S., J. Huang, W. Weng, Y. Qian, X. Lu, M. Aldén, and Z. Li. 2022. Ignition and combustion behavior of single micron-sized iron particle in hot gas flow. Combust Flame 241:112099. doi:10.1016/j.combustflame.2022.112099.
  • Liu, F., K. J. Daun, D. R. Snelling, and G. J. Smallwood. 2006. Heat conduction from a spherical nano-particle: Status of modeling heat conduction in laser-induced incandescence. Appl. Phys. B 83:355–82.
  • McBride, B. J., 2002. NASA Glenn coefficients for calculating thermodynamic properties of individual species, NASA Technical Paper, National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field.
  • Mi, X., A. Fujinawa, and J. M. Bergthorson. 2022. A quantitative analysis of the ignition characteristics of fine iron particles. Combust Flame 240:112011. doi:10.1016/j.combustflame.2022.112011.
  • Ning, D., Y. Shoshin, J. A. van Oijen, G. Finotello, and L. P. H. de Goey. 2021a. Burn time and combustion regime of laser-ignited single iron particle. Combust. Flame 230:111424. doi:10.1016/j.combustflame.2021.111424.
  • Ning, D., Y. Shoshin, M. van Stiphout, J. A. van Oijen, G. Finotello, and L. P. H. de Goey. 2021b. Temperature and phase transitions of laser ignited single iron particle. Combust. Flame 236:111801. doi:10.1016/j.combustflame.2021.111801.
  • Ning, D. 30 jun 2022 Experimental Investigation into Single Iron Particle Combustion (Eindhoven University of Technology)
  • Poletaev, N., and M. Khlebnikova. 2020. Combustion of iron particles suspension in laminar premixed and diffusion flames. Combust Sci Technol 194 (7):1356–77. doi:10.1080/00102202.2020.1812588.
  • Ranz, W., and J. Marshall. 1952. Evaporation from drops. Chem. Eng. Prog 48:173–80.
  • Ravi, A., L. P. H. de Goey, and J. A. van Oijen. 2022. Flame structure and burning velocity of flames propagating in binary iron aerosols. Proc Combust Inst. Under Review.
  • Richter, A., and P. A. Nikrityuk. 2012. Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers. Int. J. Heat Mass Transf 55 (4):1343–54. doi:10.1016/j.ijheatmasstransfer.2011.09.005.
  • Rumminger, M. D., D. Reinelt, V. I. Babushok, and G. T. Linteris. 1999. Numerical study of the inhibition of premixed and diffusion flames by iron pentacarbonyl. Combust. Flame 116 (1–2):207–19. doi:10.1016/S0010-2180(98)00033-9.
  • Saxena, S. K., N. Chatterjee, Y. Fei, and G. Shen. 1993. Thermodynamic data on oxides and silicates. 1st ed. Berlin Heidelberg: Springer-Verlag.
  • Schiemann, M., P. Fischer, and J. M. Bergthorson, 2017. Iron particles as carbon-neutral fuel in spray roasting reactors, in: Digital Proceedings of the 8th European Combustion Meeting, Dubrovnik, Croatia, April 2017, 487–92.
  • Soo, M., X. Mi, S. Goroshin, A. J. Higgins, and J. M. Bergthorson. 2018. Combustion of particles, agglomerates, and suspensions – A basic thermophysical analysis. Combust. Flame 192:384–400. doi:10.1016/j.combustflame.2018.01.032.
  • Sun, J. H., R. Dobashi, and T. Hirano. 2000. Combustion behavior of iron particles suspended in air. Combust Sci Technol 150 (1–6):99–114. doi:10.1080/00102200008952119.
  • Sundaram, D. S., P. Puri, and V. Yang. 2016. A general theory of ignition and combustion of nano- and micron-sized aluminum particles. Combust. Flame 169:94–109. doi:10.1016/j.combustflame.2016.04.005.
  • Tajfirooz, S., J. G. Meijer, J. G. M. Kuerten, M. Hausmann, J. Fröhlich, and J. C. H. Zeegers. 2021. Statistical-learning method for predicting hydrodynamic drag, lift, and pitching torque on spheroidal particles. Phys. Rev. E 103 (2):023304. doi:10.1103/PhysRevE.103.023304.
  • Tang, F. D., S. Goroshin, A. Higgins, and J. Lee. 2009. Flame propagation and quenching in iron dust clouds. Proc Combust Inst 32 (2):1905–12. doi:10.1016/j.proci.2008.05.084.
  • Thijs, L. C., C. E. A. G. van Gool, W. J. S. Ramaekers, J. A. van Oijen, and L. P. H. de Goey. 2022. Resolved simulations of single iron particle combustion and the release of nanoparticles. Proc Combust Inst. Under Review.
  • Watanabe, S., Y. Tsu, K. Takano, and Y. Shiraishi. 1980. Density of pure iron in solid and liquid states. Japan Inst Metals 45 (3):242–49. doi:10.2320/jinstmet1952.45.3_242.
  • Whitaker, S. 1972. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J. 18 (2):361–71. doi:10.1002/aic.690180219.
  • Wittig, K., P. Nikrityuk, and A. Richter. 2017. Drag coefficient and nusselt number for porous particles under laminar flow conditions. Int. J. Heat Mass Transf 112:1005–16. doi:10.1016/j.ijheatmasstransfer.2017.05.035.
  • Wright, A., A. J. Higgins, and S. Goroshin. 2016. The discrete regime of flame propagation in metal particulate clouds. Combust Sci Technol 188 (11–12):2178–99. doi:10.1080/00102202.2016.1211877.