123
Views
0
CrossRef citations to date
0
Altmetric
Research Article

1D TEMPERATURE TOMOGRAPHY OF A FLAME, BASED ON VIS-NIR SPECTROMETRY

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 629-643 | Received 23 Dec 2021, Accepted 21 Jun 2022, Published online: 13 Jul 2022

References

  • Askarova, A. S., S. A. Bolegenova, V. Yu, and A. B. Maximov. 2012. Mathematical simulation of pulverized coal in combustion chamber. Procedia Eng 42:1150–56. Available at http://www.chemistryviews.org/details/event/1362937/20th_International_Congress_of_Chemical_and_Process_Engineering_CHISA_2012.html
  • Ayling, A. B., and I. W. Smith. 1972. Measured temperatures of burning pulverized-fuel particles, and the nature of the primary reaction product. Combust. Flame 18 (2):173–84. doi:10.1016/S0010-2180(72)80133-0.
  • Backstrom, D., Johansson, R., Andersson, K., Johansson, F., Clausen, S., and Fateev, A. 2014. Measurement and modelling of particle Radiation in Coal Flames. Energy & Fuels 28:2199–2210.
  • Ballester, J., and T. García-Armingol. 2010. Diagnostic techniques for the monitoring and control of practical flames. Prog. Energy Combust. Sci 36 (4):375–411. doi:10.1016/j.pecs.2009.11.005.
  • Cheng, Q., X. Zhang, Z. Wang, H. Zhou, S. Shao, et al. 2014. Simultaneous measurement of three-dimensional temperature distributions and radiative properties based on radiation image processing technology in a gas-fired pilot tubular furnace. Heat Transf. Eng. 35(6–8):770–79. doi:10.1080/08832323.2013.838096.
  • Clausen, S. 1996. Local measurement of gas temperature with an infrared fiber-optic probe. Meas. Sci. Technol 7 (6):888–96. doi:10.1088/0957-0233/7/6/005.
  • Fang, Q., H. Wang, Y. Wei, L. Lei, X. Duan, H. Zhou, et al. 2010. Numerical simulations of the slagging characteristics in a down-fired, pulverized-coal boiler furnace. Fuel Process. Technol. 91(1):88–96. doi:10.1016/j.fuproc.2009.08.022.
  • Jiang, Z., Z. Luo, and H. Zhou. 2009. A simple measurement method of temperature and emissivity of coal-fired flames from visible radiation image and its application in a CFB boiler furnace. Fuel 88 (6):980–87. doi:10.1016/j.fuel.2008.12.014.
  • Jorgensen, F. R. A., and M. Zuiderwyk. 1985. Two-color pyrometer measurement of the temperature of individual combusting particles. J. Phys. E 18 (6):486–91. doi:10.1088/0022-3735/18/6/006.
  • Joutsenoja, T., J. Stenberg, R. Hernberg, M. Aho, et al. 1997. Pyrometric measurement of the temperature and size of individual combusting fuel particles. Applied Optics. 36(7):1525–35. doi:10.1364/AO.36.001525.
  • Khatami, R., and Y. A. Levendis. 2011. On the deduction of single coal particle combustion temperature from three-color optical pyrometry. Combust. Flame 158 (9):1822–36. doi:10.1016/j.combustflame.2011.01.007.
  • Khose-Hoinghaus, K., R. S. Barlow, M. Alden, and J. Wolrfum. 2005. Combustion at the focus: Laser diagnostic and control. Proc. Combust. Inst 30 (1):89–123. doi:10.1016/j.proci.2004.08.274.
  • Kuang, M., Z. Li, Y. Zhang, X. Chen, J. Jia, Q. Zhu, et al. 2012. Asymmetric combustion characteristics and NO x emissions of a down-fired 300MW e utility boiler at different boiler loads. Energy. 37(1):580–90. doi:10.1016/j.energy.2011.10.046.
  • Levendis, Y. A., K. R. Estrada, and H. C. Hottel. 1992. Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles. Rev. Sci. Instrum 63 (7):3608–22. doi:10.1063/1.1143586.
  • Li, H. Y. 2001. A two-dimensional cylindrical inverse source problem in radiative transfer. J. Quant.Spectrosc. Radiat. Transf 69 (4):403–14. doi:10.1016/S0022-4073(00)00084-4.
  • Li, W., C. Lou, Y. Sun, and H. Zhou. 2011. Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system. Experimental Thermal and Fluid Science 35 (2):416–21. doi:10.1016/j.expthermflusci.2010.10.005.
  • Liu, D., F. Wang, J. H. Yan, Q. X. Huang, Y. Chi, K. F. Cen, et al. 2008. Inverse radiation problem of temperature field in three-dimensional rectangular enclosure containing inhomogeneous, anisotropically scattering media. Int. J. Heat Mass Transf. 51(13–14):3434–41. doi:10.1016/j.ijheatmasstransfer.2007.11.007.
  • Lou, C., and H. C. Zhou. 2005. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation. Combust. Flame 143 (1–2):97–105. doi:10.1016/j.combustflame.2005.05.005.
  • Lukovic, M., Vicic, M., Popovic, Z., Zekovic, Lj., Kasalica, B., and Belca, I. 2018. Two-color pyrometer-based method for measuring temperature profiles and attenuation coefficients in a coal power plant. Combustion science and technology, Taylor & Francis doi:10.1080/00102202.2018.1481401.
  • Marjanović, A., Vujnovic, S., and Đurovc, Ž. 2020. One approach to temperature distribution control in thermal power plant boilers. Combustion science and technology 61 . Journal for Control, Measurement, Electronics, Computing and Communications, Taylor & Francis doi:10.1080/00051144.2020.1733792.
  • Niu, Z. T., H. Qi, Z. Y. Zhu, K. F. Li, Y. T. Ren, and M. J. He. 2021. A novel parametric level set method coupled with Tikhonov regularization for tomographic laser absorption reconstruction, Appl. Therm. Eng 201:117819. doi:10.1016/j.applthermaleng.2021.117819.
  • Rinaldi, F., and B. Najafi. 2013. Temperature Measurement in WTE Boilers UsingSuction Pyrometers. Sensors (Switzerland) 13 (11):15633–55. doi:10.3390/s131115633.
  • Schroeder, A. R., D. M. Thompson, G. G. Daves, R. O. Buckius, H. Krier, J. E. Peters, et al. 1992. Simultaneous particle morphology and temperature measurements of burning pulverized coal. Symp. (Int.) Combust. 24(1):1161–69. doi:10.1016/S0082-0784(06)80137-2.
  • Shui, C., J. Huang, H. Liu, W. Cai, and S. T. Sanders. 2021. Tomographic absorption spectroscopy based on dictionary learning. Opt. Express 29 (22):36400. doi:10.1364/OE.440709.
  • Snow Draper, T., Zeltner, D., Tree, D., Xue, J., and Tsiava, R., et al. 2012. Two-dimensional flame temperature and emissivity measurements of pulverized oxy-coal flames. Appl. Energy 95 38–44 doi:10.1016/j.apenergy.2012.01.062
  • Wang, F., X. J. Wang, Y. Z. Ma, J. H. Yan, Y. Chi, C. Y. Wei, M. J. Ni, K. F. Cen, et al. 2002. The research on the estimation for the NOx emissive concentration of the pulverized coal boiler by the flame image processing technique. Fuel. 81(16):2113–20. doi:10.1016/S0016-2361(02)00145-X.
  • Yang, C., H. Zhou, and Z. Huang. 2008. Visualization of 3-D temperature distribution in a 300 MW, twin-furnace, coal-fired boiler. J China Univ Min Technol 18 (1):0033–7. doi:10.1016/S1006-1266(08)60007-3.
  • Zhang, B., W.-J. Peng, L. Jian, Z.-H. Li, C.-L. Xu, et al. 2021. A fast tomographic reconstruction method for flame temperature distribution measurement based on direct solution algorithm. Front. Energy Res 9:790581. doi:10.3389/fenrg.2021.790581.
  • Zhou, H.-C., Y.-B. Hou, D.-L. Chen, C.-G. Zheng, et al. 2002. An inverse radiative transfer problem of simultaneously estimating profiles of temperature and radiative parameters from boundary intensity and temperature measurements. Journal of Quantitative Spectroscopy and Radiative Transfer. 74(5):605–20. doi:10.1016/S0022-4073(01)00274-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.