325
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of soot formation in inverse diffusion flames of CO2 and N2 addition: Isolation of dilution and thermal effects

&
Pages 645-663 | Received 01 Apr 2022, Accepted 23 Jun 2022, Published online: 30 Jun 2022

References

  • Ashraf, M. A., H. A. Ahmed, S. Steinmetz, M. J. Dunn, and A. R. Masri. 2021. On the effects of varying coflow oxygen on soot and precursor nanoparticles in ethylene laminar diffusion flames. Fuel 300:120913. doi:10.1016/j.fuel.2021.120913.
  • Axelbaum, R. L., and C. K. Law. 1991. Soot formation and inert addition in diffusion flames. Symp. (Int.) Combust. 23 (1):1517–23. doi:10.1016/S0082-0784(06)80421-2.
  • Bockhorn, H. Ed., 1994. Soot formation in combustion - mechanisms and models Heidelberg: Springer-Verlag. 10.1007/978-3-642-85167-4_1
  • Chang, H., and T. T. Charalampopoulos. 1990. Determination of the wavelength dependence of refractive indices of flame soot. Proc. Royal Soc. London A, Math. Phys. Eng. Sci. 430 (1880):577–91. doi:10.1098/rspa.1990.0107.
  • Charest, M. R. J., Ö. L. Gülder, and C. P. T. Groth. 2014. Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures. Combust. Flame 161 (10):2678–91. doi:10.1016/j.combustflame.2014.04.012.
  • Demarco, R., A. Jereza, F. Liu, L. Chen, and A. Fuentes. 2021. Modeling soot formation in laminar coflow ethylene inverse diffusion flames. Combust. Flame 232:111513. doi:10.1016/j.combustflame.2021.111513.
  • Du, D. X., R. L. Axelbaum, and C. K. Law. 1990. The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames. Symp. (Int.) Combust. 23 (1):1501–07. doi:10.1016/S0082-0784(06)80419-4.
  • Duan, J., Y. Ying, and D. Liu. 2019. Novel nanoscale control on soot formation by local CO2 micro-injection in ethylene inverse diffusion flames. Energy 175:697–708. doi:10.1016/j.energy.2019.04.203.
  • Escudero, F., A. Fuentes, R. Demarco, J.-L. Consalvi, F. Liu, J. C. Elicer-Cortés, and C. Fernandez-Pello. 2016. Effects of oxygen index on soot production and temperature in an ethylene inverse diffusion flame. Exp. Therm. Fluid Sci. 73:101–08. doi:10.1016/j.expthermflusci.2015.09.029.
  • Ferrero, A., and S. Salicone. 2006. Measurement uncertainty. IEEE Instru. Meas. Mag. 9 (3):44–51. doi:10.1109/MIM.2006.1637979.
  • Frenklach, M., and H. Wang. 1991. Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust. 23 (1):1559–66. doi:10.1016/S0082-0784(06)80426-1.
  • Gülder, Ö. L., and D. R. Snelling. 1993. Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames. Combust. Flame 92 (1–2):115–24. doi:10.1016/0010-2180(93)90202-E.
  • Guo, H., and G. J. Smallwood. 2008. A numerical study on the influence of CO2 addition on soot formation in an ethylene/air diffusion flame. Combust. Sci. Technol. 180 (10–11):1695–708. doi:10.1080/00102200802258072.
  • Guo, J., Z. Liu, X. Huang, T. Zhang, W. Luo, F. Hu, P. Li, and C. Zheng. 2017. Experimental and numerical investigations on oxy-coal combustion in a 35 MW large pilot boiler. Fuel 187:315–27. doi:10.1016/j.fuel.2016.09.070.
  • Hoerlle, C. A., and F. M. Pereira. 2019. Effects of CO2 addition on soot formation of ethylene non-premixed flames under oxygen enriched atmospheres. Combust. Flame 203:407–23. doi:10.1016/j.combustflame.2019.02.016.
  • Kaplan, C. R., and K. Kailasanath. 2001. Flow-field effects on soot formation in normal and inverse methane-air diffusion flames. Combust. Flame 124 (1–2):275–194. doi:10.1016/S0010-2180(00)00196-6.
  • Karataş, A. E., and Ö. L. Gülder. 2012. Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci. 38 (6):818–45. doi:10.1016/j.pecs.2012.04.003.
  • Karnani, S., and D. D. Rankin. 2013. Visualizing CH* chemiluminescence in sooting flames. Combust. Flame 160 (10):2275–78. doi:10.1016/j.combustflame.2013.05.002.
  • Kennedy, I. M. 2007. The health effects of combustion-generated aerosols. Proc. Combust. Inst. 31 (2):2757–70. doi:10.1016/j.proci.2006.08.116.
  • Khatri, D., A. Gopan, Z. Yang, A. Adeosun, and R. L. Axelbaum. 2019. Characterizing early stage sub-micron particle formation during pulverized coal combustion in a flat flame burner. Fuel 258:115995. doi:10.1016/j.fuel.2019.115995.
  • Ladommatos, N., and H. Zhao. 1994. A guide to measurement of flame temperature and soot concentration in diesel engines using the two-color method Part 1: Principles. SAE. doi:10.4271/941956.
  • Lee, E. J., K. C. Oh, and H. D. Shin. 2005. Soot formation in inverse diffusion flames of diluted ethene. Fuel 84 (5):543–50. doi:10.1016/j.fuel.2004.11.003.
  • Li, Z., L. Zhang, and C. Lou. 2021. In-situ measurement of soot volume fraction and temperature in axisymmetric soot-laden flames using TR-GSVD algorithm. IEEE T. Instrum. Meas. 70:5001212. doi:10.1109/TIM.2020.3010592.
  • Liu, F., H. Guo, G. J. Smallwood, and Ö. L. Gülder. 2001. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation. Combust. Flame 125 (1–2):778–87. doi:10.1016/S0010-2180(00)00241-8.
  • Liu, F., H. Guo, G. J. Smallwood, and M. E. Hafi. 2004. Effects of gas and soot radiation on soot formation in counterflow ethylene diffusion flames. J. Quant. Spectrosc. Ra. 84 (4):501–11. doi:10.1016/S0022-4073(03)00267-X.
  • Lou, C., C. Chen, Y. Sun, and H. Zhou. 2010. Review of soot measurement in hydrocarbon-air flames. Sci. China Technol. Sci. 53 (8):2129–41. doi:10.1007/s11431-010-3212-4.
  • Lou, C., Z. Li, Y. Zhang, and B. M. Kumfer. 2021a. Soot formation characteristics in laminar coflow flames with application to oxy-combustion. Combust. Flame 227:371–83. doi:10.1016/j.combustflame.2021.01.018.
  • Lou, C., L. Zhang, Y. Pu, Z. Zhang, Z. Li, and P. Chen. 2021b. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation. J. Exp. Fluid Mech. 35 (1):1–17. doi:10.11729/syltlx20200063.
  • Mikofski, M. A., T. C. Williams, C. R. Shaddix, A. C. Fernandez-Pello, and L. G. Blevins. 2007. Structure of laminar sooting inverse diffusion flames. Combust. Flame 149 (4):463–78. doi:10.1016/j.combustflame.2007.01.006.
  • Modest, M. F. 2013. Radiative properties of particulate media, radiative heat transfer. 3rd. New York: Academic Press. doi:10.1016/B978-0-12-386944-9.50012-1.
  • Niu, Z., H. Qi, Z. Zhu, K. Li, Y. Ren, and M. He. 2022. A novel parametric level set method coupled with Tikhonov regularization for tomographic laser absorption reconstruction. Appl. Therm. Eng. 201 (B):117819. doi:10.1016/j.applthermaleng.2021.117819.
  • Rabee, B. A. 2018. The effect of inverse diffusion flame burner-diameter on flame characteristics and emissions. Energy 160:1201–07. doi:10.1016/j.energy.2018.07.061.
  • Santoro, R. J., T. T. Yeh, J. J. Horvath, and H. G. Semerjian. 1987. The transport and growth of soot particles in laminar diffusion flames. Combust. Sci. Technol. 23 (2–3):89–115. doi:10.1080/00102208708947022.
  • Schug, K. P., Y. M. Timnat, P. Yaccarino, and I. Glassman. 1980. Sooting behavior of gaseous hydrocarbon diffusion flames and the influence of additives. Combust. Sci. Technol. 22:235–50. doi:10.1080/00102208008952387.
  • Sirignano, M., and A. D’Anna. 2020. The role of CO2 dilution on soot formation and combustion characteristics in counter-flow diffusion flames of ethylene. Exp. Therm. Fluid Sci. 114:110061. doi:10.1016/j.expthermflusci.2020.110061.
  • Smooke, M. D., M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall. 2005. Soot formation in laminar diffusion flames. Combust. Flame 143 (4):613–28. doi:10.1016/j.combustflame.2005.08.028.
  • Snelling, D. R., K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser. 2002. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA J. 40 (9):1798–1795. doi:10.2514/2.1855.
  • Sun, Z., B. Dally, Z. Alwahabi, and G. Nathan. 2020. The effect of oxygen concentration in the co-flow of laminar ethylene diffusion flames. Combust. Flame 211:96–111. doi:10.1016/j.combustflame.2019.09.023.
  • Tang, Q., J. Mei, and X. You. 2016. Effects of CO2 addition on the evolution of particle size distribution functions in premixed ethylene flame. Combust. Flame 165:424–32. doi:10.1016/j.combustflame.2015.12.026.
  • Turns, S. R. 2012. An introduction to combustion: Concepts and applications, theory and practice. 3rd ed. New York: S.R. McGraw-Hill.
  • Wang, Q., G. Legros, J. Bonnety, and C. Morinc. 2017. Experimental characterization of the different nitrogen dilution effects on soot formation in ethylene diffusion flames. Proc. Combust. Inst. 36 (2):3227–35. doi:10.1016/j.proci.2016.07.063.
  • Wang, Y., and S. K. Chung. 2019. Soot formation in laminar counterflow flames. Prog. Energy Combust. Sci. 74:152–238. doi:10.1016/j.pecs.2019.05.003.
  • Wang, Y., M. Gu, Y. Zhu, L. Cao, B. Zhu, J. Wu, Y. Lin, and X. Huang. 2021. A review of the effects of hydrogen, carbon dioxide, and water vapor addition on soot formation in hydrocarbon flames. Int. J. Hydrogen Energy 46 (61):31400–27. doi:10.1016/j.ijhydene.2021.07.011.
  • Wu, J., L. Chen, P. E. Bengtsson, J. Zhou, J. Zhang, X. Wu, and K. Cen. 2019. Effects of carbon dioxide addition to fuel on soot evolution in ethylene and propane diffusion flames. Combust. Flame 199:85–95. doi:10.1016/j.combustflame.2018.10.003.
  • Xu, H., F. Liu, S. Sun, Y. Zhao, S. Meng, and W. Tang. 2017. Effects of H2O and CO2 diluted oxidizer on the structure and shape of laminar coflow syngas diffusion flames. Combust. Flame 177:67–78. doi:10.1016/j.combustflame.2016.12.001.
  • Ying, Y., and D. Liu. 2018. Nanostructure evolution and reactivity of nascent soot from inverse diffusion flames in CO2, N2, and He atmospheres. Carbon 139:172–80. doi:10.1016/j.carbon.2018.06.047.
  • Zhang, Y., F. Liu, D. Clavel, G. J. Smallwood, and C. Lou. 2019. Measurement of soot volume fraction and primary particle diameter in oxygen enriched ethylene diffusion flames using the laser-induced incandescence technique. Energy 177:421–32. doi:10.1016/j.energy.2019.04.062.
  • Zhen, H. S., Z. L. Wei, X. Y. Liu, Z. H. Liu, X. C. Wang, Z. H. Huang, and C. W. Leung. 2021. A state-of-the-art review of lab-scale inverse diffusion burners & flames: From laminar to turbulent. Fuel Process. Tech. 222:106940. doi:10.1016/j.fuproc.2021.106940.
  • Zheng, C. G., and Z. H. Liu. 2018. Oxy-fuel combustion: fundamentals, theory and practice. Cambridge: Academic Press. doi:10.1016/B978-0-12-812145-0.00002-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.