97
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimization of the Combustion Organization in a 1000 MWe Opposed Wall-Fired Utility Boiler by Wall Air Injection

, , , &
Pages 685-701 | Received 24 Apr 2022, Accepted 29 Jun 2022, Published online: 10 Jul 2022

References

  • Chen, P., M. Gu, D. Wang, J. Wang, X. Huang, H. Wang, and Y. Lin. 2021. Experimental and density functional theory study of the influence mechanism of oxygen on NO heterogeneous reduction in deep air-staged combustion. Combust. Flame 223:127–41. doi: 10.1016/j.combustflame.2020.09.036.
  • Degereji, M. U., D. B. Ingham, L. Ma, M. Pourkashanian, and A. Williams. 2012. Numerical assessment of coals/blends slagging potential in pulverized coal boilers. Fuel 102:345–53. doi: 10.1016/j.fuel.2012.07.028.
  • Fang, Q., H. Wang, Y. Wei, L. Lei, X. Duan, and H. Zhou. 2010. Numerical simulations of the slagging characteristics in a down-fired, pulverized-coal boiler furnace. Fuel Process. Technol 91 (1):88–96. 10.1016/j.fuproc.2009.08.022.
  • Gil, A. V., A. S. Zavorin, and A. V. Starchenko. 2019. Numerical investigation of the combustion process for design and non-design coal in T-shaped boilers with swirl burners. Energy 186:115844. doi: 10.1016/j.energy.2019.07.174.
  • Guo, L., M. Zhai, Z. Wang, Y. Zhang, and P. Dong. 2019. Comparison of bituminous coal and lignite during combustion: Combustion performance, coking and slagging characteristics. J. Energy Inst 92 (3):802–12. 10.1016/j.joei.2018.02.004.
  • Guo, H., W. Fan, Y. Liu, X. Zhang, S. Liu, X. Wu, J. Chen, Z. Liu, X. Wang, and R. Ma. 2021. Dynamic simulation on high-temperature corrosion behaviour of tube surface with fouling in utility boiler fired by high-chlorine coal. J. Energy Inst 95:120–31. doi: 10.1016/j.joei.2021.01.006.
  • Hu, S., J. Li, X. Yang, Y. Chen, F. Li, J. Wang, C. Wu, L. Weng, and K. Liu. 2020. Improvement on slurry ability and combustion dynamics of low quality coals with ultra-high ash content. Chem. Eng. Res. Des 156:391–401. doi: 10.1016/j.cherd.2020.02.011.
  • Jones, J. M., P. M. Patterson, M. Pourkashanian, A. Williams, A. Arenillas, F. Rubiera, and J. J. Pis. 1999. Modelling NOx formation in coal particle combustion at high temperature: An investigation of the devolatilisation kinetic factors. Fuel 78 (10):1171–79. doi:10.1016/S0016-2361(99)00024-1.
  • Laubscher, R., and P. Rousseau. 2019. Numerical investigation into the effect of burner swirl direction on furnace and superheater heat absorption for a 620 MWe opposing wall-fired pulverized coal boiler. Int J Heat Mass Transf 137:506–22. doi: 10.1016/j.ijheatmasstransfer.2019.03.150.
  • Li, Y., C. Song, and C. You. 2010. Experimental study on abrasion characteristics of rapidly hydrated sorbent for moderate temperature dry flue gas desulfurization. Energy Fuels 24 (3):1682–86. doi:10.1021/ef900986a.
  • Li, R., D. Y. He, Z. Zhou, L. D. Zhao, and X. Y. Song. 2014. High temperature corrosion behaviour of wire arc sprayed Fe based coatings. Surf. Eng 30 (8):573–78. doi:10.1179/1743294414Y.0000000287.
  • Li, Z., H. Chen, and Z. Zhang. 2021. Experimental and modeling study of H2S formation and evolution in air staged combustion of pulverized coal. Proc. Combust. Inst 38 (4):5363–71. 10.1016/j.proci.2020.08.029.
  • Liu, H., C. Tang, L. Zhang, H. Zhu, L. Nie, and D. Che. 2015. Effect of two-level over-fire air on the combustion and no x emission characteristics in a 600 mw wall-fired boiler. Numer. Heat Transfer, Part AAppl 68 (9):993–1009. doi:10.1080/10407782.2015.1023117.
  • Liu, X., H. Tan, Y. Wang, F. Yang, H. Mikulčić, M. Vujanović, and N. Duić. 2018. Low NOx combustion and SCR flow field optimization in a low volatile coal fired boiler. J. Environ. Manage 220:30–35. 10.1016/j.jenvman.2018.05.009.
  • Liu, K., B. Wei, Y. Zhang, J. Wang, L. Chen, W. Wu, H. Tan, and H. Yao. 2022. Fe occurrence form and slagging mechanism on water-wall during high iron Zhundong coal combustion process. Fuel 315:123268. doi: 10.1016/j.fuel.2022.123268.
  • Ma, H., L. Zhou, S. Ma, S. Yang, Y. Zhao, W. Zhang, and J. W. Chew. 2018. Impact of multi-hole-wall air coupling with air-staged technology on H2S evolution during pulverized coal combustion. Fuel Process. Technol 179:277–84. doi: 10.1016/j.fuproc.2018.07.016.
  • Pei, J., H. Wang, and C. You. 2020. Optimization of staged combustion in a 600 MWe tangentially fired boiler with wall air injection. Fuel 275:117951. doi: 10.1016/j.fuel.2020.117951.
  • Pei, J., Z. Chen, H. Wang, and C. You. 2021. Development and validation of slagging model for typical coals in drop-tube furnace. Fuel 289:119859. doi: 10.1016/j.fuel.2020.119859.
  • Rushdi, A., R. Gupta, A. Sharma, and D. Holcombe. 2005. Mechanistic prediction of ash deposition in a pilot-scale test facility. Fuel 84 (10):1246–58. 10.1016/j.fuel.2004.08.027.
  • Ti, S., Z. Chen, Z. Li, Y. Xie, Y. Shao, Q. Zong, Q. Zhang, H. Zhang, L. Zeng, and Q. Zhu. 2014. Influence of different swirl vane angles of over fire air on flow and combustion characteristics and NOx emissions in a 600 MWe utility boiler. Energy 74:775–87. 10.1016/j.energy.2014.07.049.
  • Wang, Q., Z. Chen, H. Han, L. Zeng, and Z. Li. 2019. Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions. Appl. Energy 238:1551–62. 10.1016/j.apenergy.2019.01.080.
  • Wang, Y., Y. Zhou, N. Bai, and J. Han. 2020. Experimental investigation of the characteristics of NOx emissions with multiple deep air-staged combustion of lean coal. Fuel 280:118416. doi: 10.1016/j.fuel.2020.118416.
  • Wang, Y., and Y. Zhou. 2020. Numerical optimization of the influence of multiple deep air-staged combustion on the NOx emission in an opposed firing utility boiler using lean coal. Fuel 269:116996. doi: 10.1016/j.fuel.2019.116996.
  • Wei, B., H. Tan, X. Wang, R. Ruan, Z. Hu, and Y. Wang. 2018. Investigation on ash deposition characteristics during Zhundong coal combustion. J. Energy Inst 91 (1):33–42. 10.1016/j.joei.2016.11.003.
  • Xiong, X., X. Liu, H. Tan, and S. Deng. 2020. Investigation on high temperature corrosion of water-cooled wall tubes at a 300 MW boiler. J. Energy Inst 93 (1):377–86. 10.1016/j.joei.2019.02.003.
  • Xu, M., J. L. T. Azevedo, and M. G. Carvalho. 2000. Modelling of the combustion process and NOx emission in a utility boiler. Fuel 79(13):1611–19. Doi. doi:10.1016/S0016-2361(00)00019-3.
  • Yan, R., Z. Chen, B. Zhang, Y. Zheng, and Z. Li. 2022. Impact of radial air staging on gas-particle flow characteristics in an industrial pulverized coal boiler. Energy 243:123123. doi: 10.1016/j.energy.2022.123123.
  • Zeng, L., Z. Jiang, X. Li, Z. Chen, J. Zhang, M. Song, and Z. Li. 2017. Experiment and numerical simulation investigations of the combustion and NOx emissions characteristics of an over-fire air system in a 600 MWe boiler. Numer. Heat Transfer, Part AAppl 71 (9):944–61. doi:10.1080/10407782.2016.1243939.
  • Zhang, X., Z. Chen, M. Zhang, L. Zeng, and Z. Li. 2021. Combustion stability, burnout and NOx emissions of the 300-MW down-fired boiler with bituminous coal: Load variation and low-load comparison with anthracite. Fuel 295:120641. 10.1016/j.fuel.2021.120641.
  • Zheng, Z., W. Yang, Y. Cai, Q. Wang, and G. Zeng. 2020a. Dynamic simulation on ash deposition and heat transfer behavior on a staggered tube bundle under high-temperature conditions. Energy 190:116390. doi: 10.1016/j.energy.2019.116390.
  • Zheng, Z., W. Yang, P. Yu, Y. Cai, H. Zhou, S. K. Boon, and P. Subbaiah. 2020b. Simulating growth of ash deposit in boiler heat exchanger tube based on CFD dynamic mesh technique. Fuel 259:116083. doi: 10.1016/j.fuel.2019.116083.
  • Zhou, H., B. Zhou, K. Dong, J. Ding, and K. Cen. 2013. Research on the slagging characteristics of easy to slagging coal in a pilot scale furnace. Fuel 109:608–15. doi: 10.1016/j.fuel.2013.03.044.
  • Zhou, J., Z. Shen, Q. Liang, J. Xu, and H. Liu. 2018. A new prediction method for the viscosity of the molten coal slag. Part 2: The viscosity model of crystalline slag. Fuel 220:233–39. doi: 10.1016/j.fuel.2018.01.056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.