239
Views
2
CrossRef citations to date
0
Altmetric
Full Manuscript

Influence of gas expansion on the velocity and stability limits of stationary curved flames in channels

& ORCID Icon
Pages 716-729 | Received 02 May 2022, Accepted 30 Jun 2022, Published online: 11 Jul 2022

References

  • Akkerman, V., C. K. Law, and V. Bychkov. 2011. Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering. Phys. Rev. E 83 (2):026305 doi:10.1103/PhysRevE.83.026305.
  • AlKhabbaz, M., F. Kodakoglu, D. Valiev, and V. Akkerman. 2022. Impacts of wall conditions on flame acceleration at the early stages of burning in channels. Phys. Rev. Fluids 7 (1):013201. doi:10.1103/PhysRevFluids.7.013201.
  • Almarcha, C., B. Denet, and J. Quinard. 2015. Premixed flames propagating freely in tubes. Combust. Flame 162 (4):1225–33. doi:10.1016/j.combustflame.2014.10.010.
  • Bauwens, C. R., J. M. Bergthorson, and S. B. Dorofeev. 2015. Experimental study of spherical-flame acceleration mechanisms in large-scale propane–air flames. Proc. Combust. Inst 35 (2):2059–66. doi:10.1016/j.proci.2014.06.118.
  • Blinnikov, S. I., and P. V. Sasorov. 1996. Landau-Darrieus instability and the fractal dimension of flame fronts. Phys. Rev. E 53 (5):4827. doi:10.1103/PhysRevE.53.4827.
  • Bychkov, V. V. 1998. Nonlinear equation for a curved stationary flame and the flame velocity. Phys. Fluids 10 (8):2091–98. doi:10.1063/1.869723.
  • Bychkov, V. V., K. A. Kovalev, and M. A. Liberman. 1999. Nonlinear equation for curved nonstationary flames and flame stability. Phys. Rev. E 60 (3):2897. doi:10.1103/PhysRevE.60.2897.
  • Bychkov, V. V., and M. A. Liberman. 2000. Dynamics and stability of premixed flames. Phys. Rep 325 (4):115–237. doi:10.1016/S0370-1573(99)00081-2.
  • Coward, H. F., and F. J. Hartwell. 1932. 277. Studies in the mechanism of flame movement. Part I. The uniform movement of flame in mixtures of methane and air, in relation to tube diameter. J. Chem. Soc. (Resumed) 1996–2004. doi:10.1039/jr9320001996.
  • Denet, B., and P. Haldenwang. 1995. A numerical study of premixed flames Darrieus-Landau instability. Combust. Sci. Tech 104 (1–3):143–67. doi:10.1080/00102209508907714.
  • Feng, R., R. Zhang, and D. Valiev. 2019. Effect of gas expansion on the fractal structure of outwardly propagating flames. In 12th Asia-Pacific Conference on Combustion, ASPACC 2019, Fukuoka, Japan, Combustion Institute, July 1-5.
  • Gostintsev, Y. A., A. G. Istratov, and Y. V. Shulenin. 1988. Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combust. Explos. Shock Waves 24 (5):563–69. doi:10.1007/BF00755496.
  • Gu, G., J. Huang, W. Han, and C. Wang. 2021. Propagation of hydrogen–oxygen flames in Hele-Shaw cells. Int. J. Hydrog. Energy 46 (21):12009–15. doi:10.1016/j.ijhydene.2021.01.071.
  • Jordan, T., L. Bernard, D. Cirrone, S. Coldrick, A. Friedrich, S. Jallais, M. Kuznetsov, C. Proust, A. Venetsanos, and J. Wen. 2021. Results of the pre-normative research project PRESLHY for the safe use of liquid hydrogen. In 9th International conference on hydrogen safety (ICHS 2021), Edinburgh, Scotland, 21­-24 September 2021 (pp. 189–207).
  • Kagan, L., and G. Sivashinsky. 2017. Transition to detonation of an expanding spherical flame. Combust. Flame 175:307–11. doi:10.1016/j.combustflame.2016.06.001.
  • Kazakov, K. A., and M. A. Liberman. 2002. Effect of vorticity production on the structure and velocity of curved flames. Phys. Rev. Lett 88 (6):064502. doi:10.1103/PhysRevLett.88.064502.
  • Kazakov, K. A. 2005. On-shell description of stationary flames. Phys. Fluids 17 (3):032107. doi:10.1063/1.1864132.
  • Kazakov, K. A., and O. G. Kharlanov. 2018. Numerical study of strongly-nonlinear regimes of steady premixed flame propagation. The effect of thermal gas expansion and finite-front-thickness effects. Combust. Theory Model 22 (5):835–61. doi:10.1080/13647830.2018.1458994.
  • Kuznetsov, M., and J. Grune. 2019. Experiments on combustion regimes for hydrogen/air mixtures in a thin layer geometry. Int. J. Hydrog. Energy 44 (17):8727–42. doi:10.1016/j.ijhydene.2018.11.144.
  • Law, C. K. 2010. Combustion physics. New York: Cambridge university press.
  • Liberman, M., V. Bychkov, S. Golberg, and D. Book. 1994. Stability of a planar flame front in the slow-combustion regime. Phys. Rev. E 49:445–53. doi:10.1103/PhysRevE.49.445.
  • Liberman, M. A., M. F. Ivanov, O. E. Peil, D. M. Valiev, and L.-E. Eriksson. 2003. Numerical studies of curved stationary flames in wide tubes. Combust. Theory Model 7 (4):653–76. doi:10.1088/1364-7830/7/4/004.
  • Liberman, M. A., M. F. Ivanov, O. E. Peil, D. M. Valiev, and L.-E. Eriksson. 2004. Self-acceleration and fractal structure of outward freely propagating flames. Phys. Fluids 16 (7):2476–82. doi:10.1063/1.1729852.
  • Matalon, M., and B. J. Matkowsky. 1982. Flames as gasdynamic discontinuities. J. Fluid Mech 124 (1):239–59. doi:10.1017/S0022112082002481.
  • Modestov, M., V. Bychkov, D. Valiev, and M. Marklund. 2009. Growth rate and the cutoff wavelength of the Darrieus-Landau instability in laser ablation. Phys. Rev. E 80 (4):046403. doi:10.1103/PhysRevE.80.046403.
  • Pan, K. L., and R. Fursenko. 2008. Characteristics of cylindrical flame acceleration in outward expansion. Phys. Fluids 20 (9):094107. doi:10.1063/1.2981837.
  • Pelce, P., and P. Clavin. 1982. Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech 124 (1):219–37. doi:10.1017/S002211208200247X.
  • Sivashinsky, G. I. 1977. Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations. Acta Astronaut 4 (11):1177–206. doi:10.1016/0094-5765(77)90096-0.
  • Sivashinsky, G. I., and P. Clavin. 1987. On the nonlinear theory of hydrodynamic instability in flames. Journal de Physique 48 (2):193–98. doi:10.1051/jphys:01987004802019300.
  • Thual, O., U. Frisch, and M. Hénon. 1988. Application of pole decomposition to an equation governing the dynamics of wrinkled flame fronts. In Dynamics of curved fronts, ed. P. Pelcé, 489–98. San Diego: Academic Press.
  • Travnikov, O. Y., V. V. Bychkov, and M. A. Liberman. 2000. Numerical studies of flames in wide tubes: Stability limits of curved stationary flames. Phys. Rev. E 61 (1):468. doi:10.1103/PhysRevE.61.468.
  • Uberoi, M. S. 1959. Flow field of a flame in a channel. The Physics of Fluids 2 (1):72–78. doi:10.1063/1.1724395.
  • Valiev, D. 2008. Flame dynamics and deflagration-to-detonation transition. PhD thesis.
  • Wu, M. H., and C. Y. Wang. 2011. Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures. Proc. Combust. Inst 33 (2):2287–93. doi:10.1016/j.proci.2010.07.081.
  • Wu, M. H., and W. C. Kuo. 2013. Accelerative expansion and DDT of stoichiometric ethylene/oxygen flame rings in micro-gaps. Proc. Combust. Inst 34 (2):2017–24. doi:10.1016/j.proci.2012.07.008.
  • Yu, R., X. S. Bai, and V. Bychkov. 2015. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability. Phys. Rev. E 92 (6):063028. doi:10.1103/PhysRevE.92.063028.
  • Zeldovich, Y. B., A. G. Istratov, N. I. Kidin, and V. B. Librovich. 1980. Flame propagation in tubes: Hydrodynamics and stability. Combust. Sci. Tech 24 (1):1–13. doi:10.1080/00102208008952419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.