188
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Pore structure development of oxidized coal and its effect on oxygen adsorption capacity

, , ORCID Icon &
Pages 777-793 | Received 05 Apr 2022, Accepted 09 Jul 2022, Published online: 18 Jul 2022

References

  • Cai, Y. D., D. M. Liu, Z. J. Pan, Y. B. Yao, J. Q. Li, and Y. K. Qiu. 2013. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 103:258–68. doi:10.1016/j.fuel.2012.06.055.
  • Cao, X. 2017. Policy and regulatory responses to coalmine closure and coal resources consolidation for sustainability in Shanxi, China. J. Clean. Prod 145:199–208. doi:10.1016/j.jclepro.2017.01.050.
  • Chen, S. D., S. Tao, D. Z. Tang, H. Xu, S. Li, J. L. Zhao, Q. Jiang, and H. X. Yang. 2017a. Pore structure characterization of different rank coals using N2 and CO2 adsorption and its effect on CH4 adsorption capacity: A case in Panguan Syncline, western Guizhou, China. Energ. Fuel 31 (6):6034–44. doi:10.1021/acs.energyfuels.7b00675.
  • Chen, X., Z. Chang, and Y. Peng. 2017b. Predicting the degree of surface oxidation on fine coals by measuring the oxygen transfer rate in coal suspensions. Fuel Process. Technol 159:313–19. doi:10.1016/j.fuproc.2017.01.044.
  • Cui, C., S. Jiang, and W. Zhang. 2017. Experimental study on the effect of a thermoresponsive secundine inhibitor on coal spontaneous combustion. Energ. Fuel 31 (12):14262–69. doi:10.1021/acs.energyfuels.7b02814.
  • Deng, J., J. Zhao, Y. Zhang, A. Huang, X. Liu, X. Zhai, and C. Wang. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process Saf. Environ 104:218–24. doi:10.1016/j.psep.2016.09.007.
  • Feng, G., Y. Wu, C. Zhang, S. Hu, H. Shao, G. Xu, X. Ren, and Z. Wang. 2017. Changes on the low-temperature oxidation characteristics of coal after CO2 adsorption: A case study. J Loss Prevent. Proc 49:536–44. doi:10.1016/j.jlp.2017.05.018.
  • Guo, H., H. Tang, Y. Wu, K. Wang, and C. Xu. 2021. Gas seepage in underground coal seams: Application of the equivalent scale of coal matrix-fracture structures in coal permeability measurements. Fuel 288:119641. doi:10.1016/j.fuel.2020.119641.
  • Guo, H. J., L. Yuan, Y. P. Cheng, K. Wang, and C. Xu. 2019. Experimental investigation on coal pore and fracture characteristics based on fractal theory. Powder Technol 346:341–49. doi:10.1016/j.powtec.2019.02.026.
  • Jayaraman, K., I. Gokalp, E. Bonifaci, and N. Merlo. 2015a. Kinetics of steam and CO2 gasification of high ash coal-char produced under various heating rates. Fuel 154:370–79. doi:10.1016/j.fuel.2015.02.091.
  • Jayaraman, K., I. Gokalp, and S. Bostyn. 2015b. High ash coal pyrolysis at different heating rates to analyze its char structure, kinetics and evolved species. J. Anal. Appl. Pyrolysis 113:426–33. doi:10.1016/j.jaap.2015.03.007.
  • Kong, X., E. Wang, S. Li, H. Lin, Z. Zhang, and Y. Ju. 2020. Dynamic mechanical characteristics and fracture mechanism of gas-bearing coal based on SHPB experiments. Theor. Appl. Fract. Mec 105:102395. doi:10.1016/j.tafmec.2019.102395.
  • Kurlenya, M. V., and V. A. Skritsky. 2017. Methane explosions and causes of their origin in highly productive sections of coal mines. J. Min. Sci 53 (5):861–67. doi:10.1134/S1062739117052886.
  • Li, J., Z. Li, Y. Yang, J. Niu, and Q. Meng. 2019. Room temperature oxidation of active sites in coal under multi-factor conditions and corresponding reaction mechanism. Fuel 256:115901. doi:10.1016/j.fuel.2019.115901.
  • Lu, H. F., J. Deng, D. J. Li, F. Xu, Y. Xiao, and C. M. Shu. 2021. Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process. Energy 227:120431. doi:10.1016/j.energy.2021.120431.
  • Lu, Y., L. Wang, Z. Ge, Z. Zhou, K. Deng, and S. Zuo. 2020. Fracture and pore structure dynamic evolution of coals during hydraulic fracturing. Fuel 259:116272. doi:10.1016/j.fuel.2019.116272.
  • Ma, T., X. Chen, X. Zhai, and Y. E. Bai. 2019. Thermogravimetric and infrared spectroscopic studies of the spontaneous combustion characteristics of different pre-oxidized lignites. RSC Adv 9 (56):32476–89. doi:10.1039/C9RA05993H.
  • Niu, H., Y. Liu, K. Wu, J. Wu, S. Li, and H. Wang. 2022. Study on pore structure change characteristics of water-immersed and air-dried coal based on SEM-BET. Combustion Sci. Technol 1–23. doi:10.1080/00102202.2022.2054272.
  • Pan, R., Z. Ma, M. Yu, J. Chao, C. Li, and J. Wang. 2020. Study on the mechanism of coal oxidation under stress disturbance. Fuel 275:117901. doi:10.1016/j.fuel.2020.117901.
  • Pan, R. K., D. Fu, Z. J. Xiao, and L. Chen. 2018. The inducement of coal spontaneous combustion disaster and control technology in a wide range of coal mine closed area. Environ.Earth Sci 77 (10):375. doi:10.1007/s12665-018-7540-1.
  • Pandey, J., N. K. Mohalik, R. K. Mishra, A. Khalkho, V. K. Singh, and D. Kumar. 2015. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires. Fire Technol 51 (2):227–45. doi:10.1007/s10694-012-0302-9.
  • Qin, Y., Y. Song, W. Liu, and W. Duo. 2021. Spatiotemporal evolution of coal spontaneous combustion in longwall gobs: A case study from mining discontinuation to resumption. Energy Sci. Eng 9 (5):710–23. doi:10.1002/ese3.854.
  • Shan, C. A., T. Zhang, X. Liang, D. Shu, Z. Zhang, X. Wei, K. Zhang, X. Feng, H. Zhu, S. Wang, et al. 2019. Effects of nano-pore system characteristics on CH4 adsorption capacity in anthracite. Front. Earth Sci 13 (1):75–91. doi:10.1007/s11707-018-0712-1.
  • Sun, L. L., Y. B. Zhang, Y. Wang, and Q. Q. Liu. 2019. Study on the reoxidation characteristics of soaked and air-dried coal. J Energ. Resour-Asme 141 (2):022203. doi:10.1115/1.4041407.
  • Sun, X., Y. Liu, S. Guo, Y. Wang, and B. Zhang. 2021. Interregional supply chains of Chinese mineral resource requirements. J. Clean. Prod 279:123514. doi:10.1016/j.jclepro.2020.123514.
  • Tan, B., G. Cheng, X. Zhu, and X. Yang. 2020. Experimental study on the physisorption characteristics of O2 in coal powder are effected by coal nanopore structure. Sci Rep 10 (1):6946. doi:10.1038/s41598-020-63988-4.
  • Tang, Z., S. Yang, G. Xu, M. Sharifzadeh, and C. Zhai. 2018. Investigation of the effect of low-temperature oxidation on extraction efficiency and capacity of coalbed methane. Process Saf. Environ 117:573–81. doi:10.1016/j.psep.2018.06.006.
  • Trechera, P., T. Moreno, P. Cordoba, N. Moreno, X. Zhuang, B. Li, J. Li, Y. Shangguan, K. Kandler, A. O. Dominguez, et al. 2020. Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. J. Hazard. Mater 399:122935. doi:10.1016/j.jhazmat.2020.122935.
  • Turcsanyi, R. Q. 2017. Central European attitudes towards Chinese energy investments: The cases of Poland, Slovakia, and the Czech Republic. Energy Policy 101:711–22. doi:10.1016/j.enpol.2016.09.035.
  • Wang, K., X. Liu, J. Deng, Y. Zhang, and S. Jiang. 2019a. Effects of pre-oxidation temperature on coal secondary spontaneous combustion. J. Therm. Anal. Calorim 138 (2):1363–70. doi:10.1007/s10973-019-08138-3.
  • Wang, K., H. Tang, F. Wang, Y. Miao, and D. Liu. 2019b. Research on complex air leakage method to prevent coal spontaneous combustion in longwall goaf. PLoS One 14 (3):e0213101. doi:10.1371/journal.pone.0213101.
  • Xu, X., Z. Meng, and Y. Wang. 2019. Experimental comparisons of multiscale pore structures between primary and disturbed coals and their effects on adsorption and seepage of coalbed methane. J. Petrol. Sci. Eng 174:704–15. doi:10.1016/j.petrol.2018.11.082.
  • Zhang, J., C. Wei, G. Yan, and G. Lu. 2019a. Structural and fractal characterization of adsorption pores of middle-high rank coal reservoirs in western Yunnan and eastern Guizhou: An experimental study of coals from the Panguan syncline and Laochang anticline. Energ. Explor. Exploit 37 (1):251–72. doi:10.1177/0144598718790319.
  • Zhang, J., H. T. Zhang, T. Ren, J. P. Wei, and Y. T. Liang. 2019b. Proactive inertisation in longwall goaf for coal spontaneous combustion control-A CFD approach. Saf. Sci 113:445–60. doi:10.1016/j.ssci.2018.12.023.
  • Zhang, Y., B. Wu, S. H. Liu, B. W. Lei, J. L. Zhao, and Y. T. Zhao. 2020. Thermal kinetics of nitrogen inhibiting spontaneous combustion of secondary oxidation coal and extinguishing effects. Fuel 278:118223. doi:10.1016/j.fuel.2020.118223.
  • Zhang, Y. S., K. Niu, W. Z. Du, J. Zhang, H. W. Wang, and J. Zhang. 2021. A method to identify coal spontaneous combustion-prone regions based on goaf flow field under dynamic porosity. Fuel 288:119690. doi:10.1016/j.fuel.2020.119690.
  • Zheng, Y., Q. Li, G. Zhang, Y. Zhao, P. Zhu, X. Ma, and X. Liu. 2020. Effect of multi-component gases competitive adsorption on coal spontaneous combustion characteristics under goaf conditions. Fuel Process. Technol 208:106510. doi:10.1016/j.fuproc.2020.106510.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.